我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:

def normalize(v):
    norm = np.linalg.norm(v)
    if norm == 0: 
       return v
    return v / norm

这个函数处理向量v的范数为0的情况。

在sklearn或numpy中是否提供了类似的函数?


当前回答

如果你在使用scikit-learn,你可以使用sklearn.预处理。normalize:

import numpy as np
from sklearn.preprocessing import normalize

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True

其他回答

如果你在使用scikit-learn,你可以使用sklearn.预处理。normalize:

import numpy as np
from sklearn.preprocessing import normalize

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True

如果您正在处理3D向量,您可以使用vg工具带简单地做到这一点。它是numpy之上的一个轻量级层,支持单值和堆叠向量。

import numpy as np
import vg

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = vg.normalize(x)
print np.all(norm1 == norm2)
# True

我在上次创业时创建了这个库,它的动机是这样的:简单的想法在NumPy中太啰嗦了。

如果你不需要最大的精度,你的函数可以简化为:

v_norm = v / (np.linalg.norm(v) + 1e-16)

我同意,如果这样的函数是包含的库的一部分,那就太好了。但据我所知,不是这样的。这是一个任意轴都能给出最佳性能的版本。

import numpy as np

def normalized(a, axis=-1, order=2):
    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2==0] = 1
    return a / np.expand_dims(l2, axis)

A = np.random.randn(3,3,3)
print(normalized(A,0))
print(normalized(A,1))
print(normalized(A,2))

print(normalized(np.arange(3)[:,None]))
print(normalized(np.arange(3)))

为了避免零除法,我用eps,但这可能不太好。

def normalize(v):
    norm=np.linalg.norm(v)
    if norm==0:
        norm=np.finfo(v.dtype).eps
    return v/norm