我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
当前回答
对于2D数组,可以使用下面的一行代码跨行规范化。要跨列归一化,只需设置axis=0。
a / np.linalg.norm(a, axis=1, keepdims=True)
其他回答
对于2D数组,可以使用下面的一行代码跨行规范化。要跨列归一化,只需设置axis=0。
a / np.linalg.norm(a, axis=1, keepdims=True)
在Christoph Gohlke编写的流行转换模块中,还有函数unit_vector()用于规范化向量:
import transformations as trafo
import numpy as np
data = np.array([[1.0, 1.0, 0.0],
[1.0, 1.0, 1.0],
[1.0, 2.0, 3.0]])
print(trafo.unit_vector(data, axis=1))
为了避免零除法,我用eps,但这可能不太好。
def normalize(v):
norm=np.linalg.norm(v)
if norm==0:
norm=np.finfo(v.dtype).eps
return v/norm
不使用sklearn,只使用numpy。 只需定义一个函数:。
假设行是变量,列是样本(轴= 1):
import numpy as np
# Example array
X = np.array([[1,2,3],[4,5,6]])
def stdmtx(X):
means = X.mean(axis =1)
stds = X.std(axis= 1, ddof=1)
X= X - means[:, np.newaxis]
X= X / stds[:, np.newaxis]
return np.nan_to_num(X)
输出:
X
array([[1, 2, 3],
[4, 5, 6]])
stdmtx(X)
array([[-1., 0., 1.],
[-1., 0., 1.]])
一个简单的点积就可以了。不需要任何额外的包装。
x = x/np.sqrt(x.dot(x))
顺便说一下,如果x的范数为0,它本质上是一个零向量,并且不能转换为单位向量(范数为1)。如果你想捕获np.array([0,0,…0])的情况,那么使用
norm = np.sqrt(x.dot(x))
x = x/norm if norm != 0 else x