我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:

def normalize(v):
    norm = np.linalg.norm(v)
    if norm == 0: 
       return v
    return v / norm

这个函数处理向量v的范数为0的情况。

在sklearn或numpy中是否提供了类似的函数?


当前回答

如果你想将存储在3D张量中的n维特征向量归一化,你也可以使用PyTorch:

import numpy as np
from torch import FloatTensor
from torch.nn.functional import normalize

vecs = np.random.rand(3, 16, 16, 16)
norm_vecs = normalize(FloatTensor(vecs), dim=0, eps=1e-16).numpy()

其他回答

我同意,如果这样的函数是包含的库的一部分,那就太好了。但据我所知,不是这样的。这是一个任意轴都能给出最佳性能的版本。

import numpy as np

def normalized(a, axis=-1, order=2):
    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2==0] = 1
    return a / np.expand_dims(l2, axis)

A = np.random.randn(3,3,3)
print(normalized(A,0))
print(normalized(A,1))
print(normalized(A,2))

print(normalized(np.arange(3)[:,None]))
print(normalized(np.arange(3)))

一个简单的点积就可以了。不需要任何额外的包装。

x = x/np.sqrt(x.dot(x))

顺便说一下,如果x的范数为0,它本质上是一个零向量,并且不能转换为单位向量(范数为1)。如果你想捕获np.array([0,0,…0])的情况,那么使用

norm = np.sqrt(x.dot(x))
x = x/norm if norm != 0 else x

在Christoph Gohlke编写的流行转换模块中,还有函数unit_vector()用于规范化向量:

import transformations as trafo
import numpy as np

data = np.array([[1.0, 1.0, 0.0],
                 [1.0, 1.0, 1.0],
                 [1.0, 2.0, 3.0]])

print(trafo.unit_vector(data, axis=1))

如果你在使用scikit-learn,你可以使用sklearn.预处理。normalize:

import numpy as np
from sklearn.preprocessing import normalize

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True

为了避免零除法,我用eps,但这可能不太好。

def normalize(v):
    norm=np.linalg.norm(v)
    if norm==0:
        norm=np.finfo(v.dtype).eps
    return v/norm