我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:

def normalize(v):
    norm = np.linalg.norm(v)
    if norm == 0: 
       return v
    return v / norm

这个函数处理向量v的范数为0的情况。

在sklearn或numpy中是否提供了类似的函数?


当前回答

如果你不需要最大的精度,你的函数可以简化为:

v_norm = v / (np.linalg.norm(v) + 1e-16)

其他回答

如果你有多维数据,并希望每个轴都归一化到最大值或总和:

def normalize(_d, to_sum=True, copy=True):
    # d is a (n x dimension) np array
    d = _d if not copy else np.copy(_d)
    d -= np.min(d, axis=0)
    d /= (np.sum(d, axis=0) if to_sum else np.ptp(d, axis=0))
    return d

使用numpys的峰对峰函数。

a = np.random.random((5, 3))

b = normalize(a, copy=False)
b.sum(axis=0) # array([1., 1., 1.]), the rows sum to 1

c = normalize(a, to_sum=False, copy=False)
c.max(axis=0) # array([1., 1., 1.]), the max of each row is 1

如果你使用多维数组,快速解决是可能的。

假设我们有一个二维数组,我们想用最后一个轴归一化,而有些行有零范数。

import numpy as np
arr = np.array([
    [1, 2, 3], 
    [0, 0, 0],
    [5, 6, 7]
], dtype=np.float)

lengths = np.linalg.norm(arr, axis=-1)
print(lengths)  # [ 3.74165739  0.         10.48808848]
arr[lengths > 0] = arr[lengths > 0] / lengths[lengths > 0][:, np.newaxis]
print(arr)
# [[0.26726124 0.53452248 0.80178373]
# [0.         0.         0.        ]
# [0.47673129 0.57207755 0.66742381]]

你提到了scikit learn,所以我想分享另一个解决方案。

学习MinMaxScaler

在sci-kit learn中,有一个叫做MinMaxScaler的API,它可以自定义你喜欢的值范围。

它也为我们处理了NaN问题。

nan被视为缺失值:不考虑是否合适,并予以维护 在transform. ...参见参考文献[1]

代码示例

代码很简单,只需输入即可

# Let's say X_train is your input dataframe
from sklearn.preprocessing import MinMaxScaler
# call MinMaxScaler object
min_max_scaler = MinMaxScaler()
# feed in a numpy array
X_train_norm = min_max_scaler.fit_transform(X_train.values)
# wrap it up if you need a dataframe
df = pd.DataFrame(X_train_norm)
Reference

[1] sklearn.preprocessing.MinMaxScaler

如果你想将存储在3D张量中的n维特征向量归一化,你也可以使用PyTorch:

import numpy as np
from torch import FloatTensor
from torch.nn.functional import normalize

vecs = np.random.rand(3, 16, 16, 16)
norm_vecs = normalize(FloatTensor(vecs), dim=0, eps=1e-16).numpy()

如果你不需要最大的精度,你的函数可以简化为:

v_norm = v / (np.linalg.norm(v) + 1e-16)