我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
我想将NumPy数组转换为单位向量。更具体地说,我正在寻找这个归一化函数的等效版本:
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
这个函数处理向量v的范数为0的情况。
在sklearn或numpy中是否提供了类似的函数?
当前回答
这可能对你也有用
import numpy as np
normalized_v = v / np.sqrt(np.sum(v**2))
但当v的长度为0时失效。
在这种情况下,引入一个小常数来防止零除法可以解决这个问题。
正如评论中所建议的,人们也可以使用
v/np.linalg.norm(v)
其他回答
如果你有多维数据,并希望每个轴都归一化到最大值或总和:
def normalize(_d, to_sum=True, copy=True):
# d is a (n x dimension) np array
d = _d if not copy else np.copy(_d)
d -= np.min(d, axis=0)
d /= (np.sum(d, axis=0) if to_sum else np.ptp(d, axis=0))
return d
使用numpys的峰对峰函数。
a = np.random.random((5, 3))
b = normalize(a, copy=False)
b.sum(axis=0) # array([1., 1., 1.]), the rows sum to 1
c = normalize(a, to_sum=False, copy=False)
c.max(axis=0) # array([1., 1., 1.]), the max of each row is 1
如果你使用多维数组,快速解决是可能的。
假设我们有一个二维数组,我们想用最后一个轴归一化,而有些行有零范数。
import numpy as np
arr = np.array([
[1, 2, 3],
[0, 0, 0],
[5, 6, 7]
], dtype=np.float)
lengths = np.linalg.norm(arr, axis=-1)
print(lengths) # [ 3.74165739 0. 10.48808848]
arr[lengths > 0] = arr[lengths > 0] / lengths[lengths > 0][:, np.newaxis]
print(arr)
# [[0.26726124 0.53452248 0.80178373]
# [0. 0. 0. ]
# [0.47673129 0.57207755 0.66742381]]
不使用sklearn,只使用numpy。 只需定义一个函数:。
假设行是变量,列是样本(轴= 1):
import numpy as np
# Example array
X = np.array([[1,2,3],[4,5,6]])
def stdmtx(X):
means = X.mean(axis =1)
stds = X.std(axis= 1, ddof=1)
X= X - means[:, np.newaxis]
X= X / stds[:, np.newaxis]
return np.nan_to_num(X)
输出:
X
array([[1, 2, 3],
[4, 5, 6]])
stdmtx(X)
array([[-1., 0., 1.],
[-1., 0., 1.]])
你提到了scikit learn,所以我想分享另一个解决方案。
学习MinMaxScaler
在sci-kit learn中,有一个叫做MinMaxScaler的API,它可以自定义你喜欢的值范围。
它也为我们处理了NaN问题。
nan被视为缺失值:不考虑是否合适,并予以维护 在transform. ...参见参考文献[1]
代码示例
代码很简单,只需输入即可
# Let's say X_train is your input dataframe
from sklearn.preprocessing import MinMaxScaler
# call MinMaxScaler object
min_max_scaler = MinMaxScaler()
# feed in a numpy array
X_train_norm = min_max_scaler.fit_transform(X_train.values)
# wrap it up if you need a dataframe
df = pd.DataFrame(X_train_norm)
Reference
[1] sklearn.preprocessing.MinMaxScaler
如果你不需要最大的精度,你的函数可以简化为:
v_norm = v / (np.linalg.norm(v) + 1e-16)