给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().

uint_fast64_t pool;

int capacity = 0;

void new_batch (void)
{
  uint_fast64_t r;
  int i;

  do {
    r = 0;
    for (i = 0; i < 23; i++)
      r = 5 * r + (rand5() - 1);
  } while (r >= 11398895185373143ULL);  /* 7**19, a bit less than 5**23 */

  pool = r;
  capacity = 19;
}

int rand7 (void)
{
  int r;

  if (capacity == 0)
    new_batch();

  r = pool % 7;
  pool /= 7;
  capacity--;

  return r + 1;
}

其他回答

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

就是这样,均匀分布,零rand5调用。

def rand7:
    seed += 1
    if seed >= 7:
        seed = 0
    yield seed

需要事先播种。

我不喜欢从1开始的范围,所以我将从0开始:-)

unsigned rand5()
{
    return rand() % 5;
}

unsigned rand7()
{
    int r;

    do
    {
        r =         rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
    } while (r > 15623);

    return r / 2232;
}

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。

PHP解决方案

<?php
function random_5(){
    return rand(1,5);
}


function random_7(){
 $total = 0;

    for($i=0;$i<7;$i++){
        $total += random_5();
    }

    return ($total%7)+1; 
}

echo random_7();
?>