找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

另一种简单的方法是遍历字符串,选择尚未使用的字符并将其放入缓冲区,继续循环,直到缓冲区大小等于字符串长度。我更喜欢这个回溯跟踪解决方案,因为:

容易理解 容易避免重复 输出是排序的

下面是java代码:

List<String> permute(String str) {
  if (str == null) {
    return null;
  }

  char[] chars = str.toCharArray();
  boolean[] used = new boolean[chars.length];

  List<String> res = new ArrayList<String>();
  StringBuilder sb = new StringBuilder();

  Arrays.sort(chars);

  helper(chars, used, sb, res);

  return res;
}

void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
  if (sb.length() == chars.length) {
    res.add(sb.toString());
    return;
  }

  for (int i = 0; i < chars.length; i++) {
    // avoid duplicates
    if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
      continue;
    }

    // pick the character that has not used yet
    if (!used[i]) {
      used[i] = true;
      sb.append(chars[i]);

      helper(chars, used, sb, res);

      // back tracking
      sb.deleteCharAt(sb.length() - 1);
      used[i] = false;
    }
  }
}

str输入:1231

输出列表:{1123,1132,1213,1231,1312,1321,2113,2131,2311,3112,3121,3211}

注意,输出是排序的,没有重复的结果。

其他回答

public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(通过Java编程入门)

Java中一个非常基本的解决方案是使用递归+设置(以避免重复),如果你想存储和返回解决方案字符串:

public static Set<String> generatePerm(String input)
{
    Set<String> set = new HashSet<String>();
    if (input == "")
        return set;

    Character a = input.charAt(0);

    if (input.length() > 1)
    {
        input = input.substring(1);

        Set<String> permSet = generatePerm(input);

        for (String x : permSet)
        {
            for (int i = 0; i <= x.length(); i++)
            {
                set.add(x.substring(0, i) + a + x.substring(i));
            }
        }
    }
    else
    {
        set.add(a + "");
    }
    return set;
}

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/

我定义了左右两个字符串。一开始,左边是输入字符串,右边是“”。我递归地从左边选择所有可能的字符,并将其添加到右边的末尾。然后,在left-charAt(I)和right+charAt(I)上调用递归函数。我定义了一个类来跟踪生成的排列。

import java.util.HashSet;
import java.util.Set;

public class FindPermutations {

    static class Permutations {
        Set<String> permutations = new HashSet<>();
    }

    /**
     * Building all the permutations by adding chars of left to right one by one.
     *
     * @param left         The left string
     * @param right        The right string
     * @param permutations The permutations
     */
    private void findPermutations(String left, String right, Permutations permutations) {
        int n = left.length();
        if (n == 0) {
            permutations.permutations.add(right);
        }
        for (int i = 0; i < n; i++) {
            findPermutations(left.substring(0, i) + left.substring(i + 1, n), right + left.charAt(i), permutations);
        }
    }

    /**
     * Gets all the permutations of a string s.
     *
     * @param s The input string
     * @return all the permutations of a string s
     */
    public Permutations getPermutations(String s) {
        Permutations permutations = new Permutations();
        findPermutations(s, "", permutations);
        return permutations;
    }

    public static void main(String[] args) {
        FindPermutations findPermutations = new FindPermutations();
        String s = "ABC";
        Permutations permutations = findPermutations.getPermutations(s);
        printPermutations(permutations);
    }

    private static void printPermutations(Permutations permutations) {
        for (String p : permutations.permutations) {
            System.out.println(p);
        }
    }

}

我希望这能有所帮助。