找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(通过Java编程入门)

其他回答

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

简单的递归c++实现如下所示:

#include <iostream>

void generatePermutations(std::string &sequence, int index){
    if(index == sequence.size()){
        std::cout << sequence << "\n";
    } else{
        generatePermutations(sequence, index + 1);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "abc";
    generatePermutations(str, 0);
    return 0;
}

输出:

abc
acb
bac
bca
cba
cab

更新

如果想要存储结果,可以将vector作为函数调用的第三个参数传递。此外,如果您只想要唯一的排列,您可以使用集合。

#include <iostream>
#include <vector>
#include <set>

void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
    if(index == sequence.size()){
        //std::cout << sequence << "\n";
        v.push_back(sequence);
    } else{
        generatePermutations(sequence, index + 1, v);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1, v);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "112";
    std::vector <std::string> permutations;
    generatePermutations(str, 0, permutations);
    std::cout << "Number of permutations " << permutations.size() << "\n";
    for(const std::string &s : permutations){
        std::cout << s << "\n";
    }
    std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
    std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
    for(const std::string &s : uniquePermutations){
        std::cout << s << "\n";
    }
    return 0;
}

输出:

Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211

这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。

我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。

运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。

在上面的乘积中,1是A, 2是B,以此类推。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

我的实现基于Mark Byers上面的描述:

    static Set<String> permutations(String str){
        if (str.isEmpty()){
            return Collections.singleton(str);
        }else{
            Set <String> set = new HashSet<>();
            for (int i=0; i<str.length(); i++)
                for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
                    set.add(str.charAt(i) + s);
            return set;
        }
    }