找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

/** Returns an array list containing all
 * permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
    ArrayList<String> perms = new ArrayList<>();
    int slen = s.length();
    if (slen > 0) {
        // Add the first character from s to the perms array list.
        perms.add(Character.toString(s.charAt(0)));

        // Repeat for all additional characters in s.
        for (int i = 1;  i < slen;  ++i) {

            // Get the next character from s.
            char c = s.charAt(i);

            // For each of the strings currently in perms do the following:
            int size = perms.size();
            for (int j = 0;  j < size;  ++j) {

                // 1. remove the string
                String p = perms.remove(0);
                int plen = p.length();

                // 2. Add plen + 1 new strings to perms.  Each new string
                //    consists of the removed string with the character c
                //    inserted into it at a unique location.
                for (int k = 0;  k <= plen;  ++k) {
                    perms.add(p.substring(0, k) + c + p.substring(k));
                }
            }
        }
    }
    return perms;
}

其他回答

使用位操作可以很容易地做到这一点。“我们都知道,任何给定的有N个元素的集合有2N个可能的子集。如果我们用一个位来表示子集中的每个元素呢?位可以是0或1,因此我们可以用它来表示对应的元素是否属于这个给定的子集。所以每个位模式代表一个子集。”(复制文本)

private void getPermutation(String str)
        {
            if(str==null)
                return;
            Set<String> StrList = new HashSet<String>();
            StringBuilder strB= new StringBuilder();
            for(int i = 0;i < (1 << str.length()); ++i)
            {
                strB.setLength(0); //clear the StringBuilder
                for(int j = 0;j < str.length() ;++j){
                    if((i & (1 << j))>0){  // to check whether jth bit is set
                        strB.append(str.charAt(j));
                    }
                }
                if(!strB.toString().isEmpty())
                    StrList.add(strB.toString());
            }
            System.out.println(Arrays.toString(StrList.toArray()));
        }

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。

所有之前的贡献者都很好地解释和提供了代码。我想我也应该分享这个方法,因为它可能也会帮助到别人。解决方案基于(堆算法)

一些事情:

注意excel中最后一项的描述只是为了帮助你更好地可视化逻辑。因此,最后一列的实际值将是2,1,0(如果我们要运行代码,因为我们处理的是数组,而数组以0开头)。 交换算法基于当前位置的偶数或奇数值发生。如果你看一下swap方法被调用的位置,你就会明白这一点。你可以看到发生了什么。

事情是这样的:

public static void main(String[] args) {

        String ourword = "abc";
        String[] ourArray = ourword.split("");
        permute(ourArray, ourArray.length);

    }

    private static void swap(String[] ourarray, int right, int left) {
        String temp = ourarray[right];
        ourarray[right] = ourarray[left];
        ourarray[left] = temp;
    }

    public static void permute(String[] ourArray, int currentPosition) {
        if (currentPosition == 1) {
            System.out.println(Arrays.toString(ourArray));
        } else {
            for (int i = 0; i < currentPosition; i++) {
                // subtract one from the last position (here is where you are
                // selecting the the next last item 
                permute(ourArray, currentPosition - 1);

                // if it's odd position
                if (currentPosition % 2 == 1) {
                    swap(ourArray, 0, currentPosition - 1);
                } else {
                    swap(ourArray, i, currentPosition - 1);
                }
            }
        }
    }

这是一个具有O(n!)时间复杂度的算法,具有纯递归和直观。

public class words {
static String combinations;
public static List<String> arrlist=new ArrayList<>();
public static void main(String[] args) {
    words obj = new words();

    String str="premandl";
    obj.getcombination(str, str.length()-1, "");
    System.out.println(arrlist);

}


public void getcombination(String str, int charIndex, String output) {

    if (str.length() == 0) {
        arrlist.add(output);
        return ;
    }

    if (charIndex == -1) {
        return ;
    }

    String character = str.toCharArray()[charIndex] + "";
    getcombination(str, --charIndex, output);

    String remaining = "";

    output = output + character;

    remaining = str.substring(0, charIndex + 1) + str.substring(charIndex + 2);

    getcombination(remaining, remaining.length() - 1, output);

}

}

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。