找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

作为Python生成器,带有现代类型提示:

from typing import Iterator


def permutations(string: str, prefix: str = '') -> Iterator[str]:
    if len(string) == 0:
        yield prefix
    for i, character in enumerate(string):
        yield from permutations(string[:i] + string[i + 1:], prefix + character)


for p in permutations('abcd'):
    print(p)

其他回答

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

//循环'整个字符数组,并保持'i'作为你的排列的基础,并像你交换[ab, ba]一样继续寻找组合

public class Permutation {
    //Act as a queue
    private List<Character> list;
    //To remove the duplicates
    private Set<String> set = new HashSet<String>();

    public Permutation(String s) {
        list = new LinkedList<Character>();
        int len = s.length();
        for(int i = 0; i < len; i++) {
            list.add(s.charAt(i));
        }
    }

    public List<String> getStack(Character c, List<Character> list) {
        LinkedList<String> stack = new LinkedList<String>();
        stack.add(""+c);
        for(Character ch: list) {
            stack.add(""+ch);
        }

        return stack;
    }

    public String printCombination(String s1, String s2) {
        //S1 will be a single character
        StringBuilder sb = new StringBuilder();
        String[] strArr = s2.split(",");
        for(String s: strArr) {
            sb.append(s).append(s1);
            sb.append(",");
        }       
        for(String s: strArr) {
            sb.append(s1).append(s);
            sb.append(",");
        }

        return sb.toString();
    }

    public void printPerumtation() {
        int cnt = list.size();

        for(int i = 0; i < cnt; i++) {
            Character c = list.get(0);
            list.remove(0);
            List<String> stack = getStack(c, list);

            while(stack.size() > 1) {
                //Remove the top two elements
                String s2 = stack.remove(stack.size() - 1);
                String s1 = stack.remove(stack.size() - 1);
                String comS = printCombination(s1, s2);
                stack.add(comS);
            }

            String[] perms = (stack.remove(0)).split(",");
            for(String perm: perms) {
                set.add(perm);
            }

            list.add(c);
        }

        for(String s: set) {
            System.out.println(s);
        }
    }
}

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

一个java实现打印给定字符串的所有排列,考虑重复字符,只打印唯一字符,如下所示:

import java.util.Set;
import java.util.HashSet;

public class PrintAllPermutations2
{
    public static void main(String[] args)
    {
        String str = "AAC";

    PrintAllPermutations2 permutation = new PrintAllPermutations2();

    Set<String> uniqueStrings = new HashSet<>();

    permutation.permute("", str, uniqueStrings);
}

void permute(String prefixString, String s, Set<String> set)
{
    int n = s.length();

    if(n == 0)
    {
        if(!set.contains(prefixString))
        {
            System.out.println(prefixString);
            set.add(prefixString);
        }
    }
    else
    {
        for(int i=0; i<n; i++)
        {
            permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
        }
    }
}
}

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。