找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

这个没有递归

public static void permute(String s) {
    if(null==s || s.isEmpty()) {
        return;
    }

    // List containing words formed in each iteration 
    List<String> strings = new LinkedList<String>();
    strings.add(String.valueOf(s.charAt(0))); // add the first element to the list

     // Temp list that holds the set of strings for 
     //  appending the current character to all position in each word in the original list
    List<String> tempList = new LinkedList<String>(); 

    for(int i=1; i< s.length(); i++) {

        for(int j=0; j<strings.size(); j++) {
            tempList.addAll(merge(s.charAt(i), strings.get(j)));
                        }
        strings.removeAll(strings);
        strings.addAll(tempList);

        tempList.removeAll(tempList);

    }

    for(int i=0; i<strings.size(); i++) {
        System.out.println(strings.get(i));
    }
}

/**
 * helper method that appends the given character at each position in the given string 
 * and returns a set of such modified strings 
 * - set removes duplicates if any(in case a character is repeated)
 */
private static Set<String> merge(Character c,  String s) {
    if(s==null || s.isEmpty()) {
        return null;
    }

    int len = s.length();
    StringBuilder sb = new StringBuilder();
    Set<String> list = new HashSet<String>();

    for(int i=0; i<= len; i++) {
        sb = new StringBuilder();
        sb.append(s.substring(0, i) + c + s.substring(i, len));
        list.add(sb.toString());
    }

    return list;
}

其他回答

这是一个具有O(n!)时间复杂度的算法,具有纯递归和直观。

public class words {
static String combinations;
public static List<String> arrlist=new ArrayList<>();
public static void main(String[] args) {
    words obj = new words();

    String str="premandl";
    obj.getcombination(str, str.length()-1, "");
    System.out.println(arrlist);

}


public void getcombination(String str, int charIndex, String output) {

    if (str.length() == 0) {
        arrlist.add(output);
        return ;
    }

    if (charIndex == -1) {
        return ;
    }

    String character = str.toCharArray()[charIndex] + "";
    getcombination(str, --charIndex, output);

    String remaining = "";

    output = output + character;

    remaining = str.substring(0, charIndex + 1) + str.substring(charIndex + 2);

    getcombination(remaining, remaining.length() - 1, output);

}

}

一个java实现打印给定字符串的所有排列,考虑重复字符,只打印唯一字符,如下所示:

import java.util.Set;
import java.util.HashSet;

public class PrintAllPermutations2
{
    public static void main(String[] args)
    {
        String str = "AAC";

    PrintAllPermutations2 permutation = new PrintAllPermutations2();

    Set<String> uniqueStrings = new HashSet<>();

    permutation.permute("", str, uniqueStrings);
}

void permute(String prefixString, String s, Set<String> set)
{
    int n = s.length();

    if(n == 0)
    {
        if(!set.contains(prefixString))
        {
            System.out.println(prefixString);
            set.add(prefixString);
        }
    }
    else
    {
        for(int i=0; i<n; i++)
        {
            permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
        }
    }
}
}

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。

在python中

def perms(in_str, prefix=""):
if not len(in_str) :
    print(prefix)
else:        
    for i in range(0, len(in_str)):
        perms(in_str[:i] + in_str[i + 1:], prefix + in_str[i])

perms('ASD')