找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

//循环'整个字符数组,并保持'i'作为你的排列的基础,并像你交换[ab, ba]一样继续寻找组合

public class Permutation {
    //Act as a queue
    private List<Character> list;
    //To remove the duplicates
    private Set<String> set = new HashSet<String>();

    public Permutation(String s) {
        list = new LinkedList<Character>();
        int len = s.length();
        for(int i = 0; i < len; i++) {
            list.add(s.charAt(i));
        }
    }

    public List<String> getStack(Character c, List<Character> list) {
        LinkedList<String> stack = new LinkedList<String>();
        stack.add(""+c);
        for(Character ch: list) {
            stack.add(""+ch);
        }

        return stack;
    }

    public String printCombination(String s1, String s2) {
        //S1 will be a single character
        StringBuilder sb = new StringBuilder();
        String[] strArr = s2.split(",");
        for(String s: strArr) {
            sb.append(s).append(s1);
            sb.append(",");
        }       
        for(String s: strArr) {
            sb.append(s1).append(s);
            sb.append(",");
        }

        return sb.toString();
    }

    public void printPerumtation() {
        int cnt = list.size();

        for(int i = 0; i < cnt; i++) {
            Character c = list.get(0);
            list.remove(0);
            List<String> stack = getStack(c, list);

            while(stack.size() > 1) {
                //Remove the top two elements
                String s2 = stack.remove(stack.size() - 1);
                String s1 = stack.remove(stack.size() - 1);
                String comS = printCombination(s1, s2);
                stack.add(comS);
            }

            String[] perms = (stack.remove(0)).split(",");
            for(String perm: perms) {
                set.add(perm);
            }

            list.add(c);
        }

        for(String s: set) {
            System.out.println(s);
        }
    }
}

其他回答

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

简单的解决方案,利用swift语言的特点,数组是值类型。

func permutation(chrs: [String], arr: [String], result: inout [[String]]) {
   if arr.count == chrs.count {
       result.append(arr)
       return
   }

   for chr in chrs {
       var arr = arr
       if !arr.contains(chr) {
           arr.append(chr)
           permutation(chrs: chrs, arr: arr, result: &result)
       }
   }
}

func test() {
   var result = [[String]]()
   let chrs = ["a", "b", "c", "d"]
   permutation(chrs: chrs, arr: [], result: &result)
}

复杂度O(n * n!)

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。

import java.io.*;
public class Anagram {

public static void main(String[] args) {
      java.util.Scanner sc=new java.util.Scanner(System.in);
            PrintWriter p=new PrintWriter(System.out,true);
            p.println("Enter Word");
            String a[],s="",st;boolean flag=true;
            int in[],n,nf=1,i,j=0,k,m=0;
            char l[];
            st=sc.next();
            p.println("Anagrams");
            p.println("1 . "+st);
            l=st.toCharArray();
            n=st.length();
            for(i=1;i<=n;i++){
                nf*=i;
            }

            i=1;
            a=new String[nf];
            in=new int[n];
            a[0]=st;
            while(i<nf){
                for(m=0;m<n;m++){
                    in[m]=n;
                }j=0;
                while(j<n){
                    k=(int)(n*Math.random());

                    for(m=0;m<=j;m++){
                        if(k==in[m]){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        in[j++]=k;
                    }flag=true;
                }s="";
                for(j=0;j<n;j++){
                    s+=l[in[j]];
                }

                //Removing same words
                for(m=0;m<=i;m++){
                        if(s.equalsIgnoreCase(a[m])){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        a[i++]=s;
                        p.println(i+" . "+a[i-1]);
                    }flag=true;

            }

    }
}