找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

其他回答

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

其中一个简单的解决方案是使用两个指针继续递归地交换字符。

public static void main(String[] args)
{
    String str="abcdefgh";
    perm(str);
}
public static void perm(String str)
{  char[] char_arr=str.toCharArray();
    helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
    if(i==char_arr.length-1)
    {
        // print the shuffled string 
            String str="";
            for(int j=0; j<char_arr.length; j++)
            {
                str=str+char_arr[j];
            }
            System.out.println(str);
    }
    else
    {
    for(int j=i; j<char_arr.length; j++)
    {
        char tmp = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp;
        helper(char_arr,i+1);
        char tmp1 = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp1;
    }
}
}

我一直在学习递归思考,第一个打动我的自然解决方案如下。一个更简单的问题是找到一个短一个字母的字符串的排列。我将假设,并相信我的每一根纤维,我的函数可以正确地找到一个字符串的排列,比我目前正在尝试的字符串短一个字母。

Given a string say 'abc', break it into a subproblem of finding permutations of a string one character less which is 'bc'. Once we have permutations of 'bc' we need to know how to combine it with 'a' to get the permutations for 'abc'. This is the core of recursion. Use the solution of a subproblem to solve the current problem. By observation, we can see that inserting 'a' in all the positions of each of the permutations of 'bc' which are 'bc' and 'cb' will give us all the permutations of 'abc'. We have to insert 'a' between adjacent letters and at the front and end of each permutation. For example

我们有bc

“a”+“bc”=“abc”

“b”+“a”+“c”=“bac”

“b”+“a”=“b”

对于'cb'我们有

a + b = acb

“c”+“a”+“b”=“cab”

“cb”+“a”=“cb”

下面的代码片段将说明这一点。下面是该代码片段的工作链接。

def main():
    result = []
    for permutation in ['bc', 'cb']:
        for i in range(len(permutation) + 1):
            result.append(permutation[:i] + 'a' + permutation[i:])
    return result


if __name__ == '__main__':
    print(main())

完整的递归解将是。下面是完整代码的工作链接。

def permutations(s):
    if len(s) == 1 or len(s) == 0:
        return s
    _permutations = []
    for permutation in permutations(s[1:]):
        for i in range(len(permutation) + 1):
            _permutations.append(permutation[:i] + s[0] + permutation[i:])
    return _permutations


def main(s):
    print(permutations(s))


if __name__ == '__main__':
    main('abc')

一个java实现打印给定字符串的所有排列,考虑重复字符,只打印唯一字符,如下所示:

import java.util.Set;
import java.util.HashSet;

public class PrintAllPermutations2
{
    public static void main(String[] args)
    {
        String str = "AAC";

    PrintAllPermutations2 permutation = new PrintAllPermutations2();

    Set<String> uniqueStrings = new HashSet<>();

    permutation.permute("", str, uniqueStrings);
}

void permute(String prefixString, String s, Set<String> set)
{
    int n = s.length();

    if(n == 0)
    {
        if(!set.contains(prefixString))
        {
            System.out.println(prefixString);
            set.add(prefixString);
        }
    }
    else
    {
        for(int i=0; i<n; i++)
        {
            permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
        }
    }
}
}
//Rotate and create words beginning with all letter possible and push to stack 1

//Read from stack1 and for each word create words with other letters at the next location by rotation and so on 

/*  eg : man

    1. push1 - man, anm, nma
    2. pop1 - nma ,  push2 - nam,nma
       pop1 - anm ,  push2 - amn,anm
       pop1 - man ,  push2 - mna,man
*/

public class StringPermute {

    static String str;
    static String word;
    static int top1 = -1;
    static int top2 = -1;
    static String[] stringArray1;
    static String[] stringArray2;
    static int strlength = 0;

    public static void main(String[] args) throws IOException {
        System.out.println("Enter String : ");
        InputStreamReader isr = new InputStreamReader(System.in);
        BufferedReader bfr = new BufferedReader(isr);
        str = bfr.readLine();
        word = str;
        strlength = str.length();
        int n = 1;
        for (int i = 1; i <= strlength; i++) {
            n = n * i;
        }
        stringArray1 = new String[n];
        stringArray2 = new String[n];
        push(word, 1);
        doPermute();
        display();
    }

    public static void push(String word, int x) {
        if (x == 1)
            stringArray1[++top1] = word;
        else
            stringArray2[++top2] = word;
    }

    public static String pop(int x) {
        if (x == 1)
            return stringArray1[top1--];
        else
            return stringArray2[top2--];
    }

    public static void doPermute() {

        for (int j = strlength; j >= 2; j--)
            popper(j);

    }

    public static void popper(int length) {
        // pop from stack1 , rotate each word n times and push to stack 2
        if (top1 > -1) {
            while (top1 > -1) {
                word = pop(1);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 2);
                }
            }
        }
        // pop from stack2 , rotate each word n times w.r.t position and push to
        // stack 1
        else {
            while (top2 > -1) {
                word = pop(2);
                for (int j = 0; j < length; j++) {
                    rotate(length);
                    push(word, 1);
                }
            }
        }

    }

    public static void rotate(int position) {
        char[] charstring = new char[100];
        for (int j = 0; j < word.length(); j++)
            charstring[j] = word.charAt(j);

        int startpos = strlength - position;
        char temp = charstring[startpos];
        for (int i = startpos; i < strlength - 1; i++) {
            charstring[i] = charstring[i + 1];
        }
        charstring[strlength - 1] = temp;
        word = new String(charstring).trim();
    }

    public static void display() {
        int top;
        if (top1 > -1) {
            while (top1 > -1)
                System.out.println(stringArray1[top1--]);
        } else {
            while (top2 > -1)
                System.out.println(stringArray2[top2--]);
        }
    }
}