找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?
当前回答
简单的递归c++实现如下所示:
#include <iostream>
void generatePermutations(std::string &sequence, int index){
if(index == sequence.size()){
std::cout << sequence << "\n";
} else{
generatePermutations(sequence, index + 1);
for(int i = index + 1 ; i < sequence.size() ; ++i){
std::swap(sequence[index], sequence[i]);
generatePermutations(sequence, index + 1);
std::swap(sequence[index], sequence[i]);
}
}
}
int main(int argc, char const *argv[])
{
std::string str = "abc";
generatePermutations(str, 0);
return 0;
}
输出:
abc
acb
bac
bca
cba
cab
更新
如果想要存储结果,可以将vector作为函数调用的第三个参数传递。此外,如果您只想要唯一的排列,您可以使用集合。
#include <iostream>
#include <vector>
#include <set>
void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
if(index == sequence.size()){
//std::cout << sequence << "\n";
v.push_back(sequence);
} else{
generatePermutations(sequence, index + 1, v);
for(int i = index + 1 ; i < sequence.size() ; ++i){
std::swap(sequence[index], sequence[i]);
generatePermutations(sequence, index + 1, v);
std::swap(sequence[index], sequence[i]);
}
}
}
int main(int argc, char const *argv[])
{
std::string str = "112";
std::vector <std::string> permutations;
generatePermutations(str, 0, permutations);
std::cout << "Number of permutations " << permutations.size() << "\n";
for(const std::string &s : permutations){
std::cout << s << "\n";
}
std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
for(const std::string &s : uniquePermutations){
std::cout << s << "\n";
}
return 0;
}
输出:
Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211
其他回答
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
这是另一个更简单的方法来做一个字符串的排列。
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列
算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换
注意:上述递归函数将从起始索引中调用。
private void PrintAllPermutations(int[] a, int index, ref int count)
{
if (index == (a.Length - 1))
{
count++;
var s = string.Format("{0}: {1}", count, string.Join(",", a));
Debug.WriteLine(s);
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
this.PrintAllPermutations(a, index + 1, ref count);
Utilities.swap(ref a[i], ref a[index]);
}
}
private int PrintAllPermutations(int[] a)
{
a.ThrowIfNull("a");
int count = 0;
this.PrintAllPermutations(a, index:0, count: ref count);
return count;
}
版本2(与上面相同-但返回排列而不是打印)
private int[][] GetAllPermutations(int[] a, int index)
{
List<int[]> permutations = new List<int[]>();
if (index == (a.Length - 1))
{
permutations.Add(a.ToArray());
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
var r = this.GetAllPermutations(a, index + 1);
permutations.AddRange(r);
Utilities.swap(ref a[i], ref a[index]);
}
return permutations.ToArray();
}
private int[][] GetAllPermutations(int[] p)
{
p.ThrowIfNull("p");
return this.GetAllPermutations(p, 0);
}
单元测试
[TestMethod]
public void PermutationsTests()
{
List<int> input = new List<int>();
int[] output = { 0, 1, 2, 6, 24, 120 };
for (int i = 0; i <= 5; i++)
{
if (i != 0)
{
input.Add(i);
}
Debug.WriteLine("================PrintAllPermutations===================");
int count = this.PrintAllPermutations(input.ToArray());
Assert.IsTrue(count == output[i]);
Debug.WriteLine("=====================GetAllPermutations=================");
var r = this.GetAllPermutations(input.ToArray());
Assert.IsTrue(count == r.Length);
for (int j = 1; j <= r.Length;j++ )
{
string s = string.Format("{0}: {1}", j,
string.Join(",", r[j - 1]));
Debug.WriteLine(s);
}
Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
}
}
下面是一个java实现:
/* All Permutations of a String */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Complexity O(n*n!) */
class Ideone
{
public static ArrayList<String> strPerm(String str, ArrayList<String> list)
{
int len = str.length();
if(len==1){
list.add(str);
return list;
}
list = strPerm(str.substring(0,len-1),list);
int ls = list.size();
char ap = str.charAt(len-1);
for(int i=0;i<ls;i++){
String temp = list.get(i);
int tl = temp.length();
for(int j=0;j<=tl;j++){
list.add(temp.substring(0,j)+ap+temp.substring(j,tl));
}
}
while(true){
String temp = list.get(0);
if(temp.length()<len)
list.remove(temp);
else
break;
}
return list;
}
public static void main (String[] args) throws java.lang.Exception
{
String str = "abc";
ArrayList<String> list = new ArrayList<>();
list = strPerm(str,list);
System.out.println("Total Permutations : "+list.size());
for(int i=0;i<list.size();i++)
System.out.println(list.get(i));
}
}
http://ideone.com/nWPb3k
这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
生成输出为[abc, acb, bac, bca, cab, cba]。
它背后的基本逻辑是
对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。
a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}
然后递归地分别调用每个[bc],[ac]和[ab]。
推荐文章
- 在流中使用Java 8 foreach循环移动到下一项
- 访问限制:'Application'类型不是API(必需库rt.jar的限制)
- 用Java计算两个日期之间的天数
- 如何配置slf4j-simple
- 在Jar文件中运行类
- 带参数的可运行?
- 我如何得到一个字符串的前n个字符而不检查大小或出界?
- 我可以在Java中设置enum起始值吗?
- Java中的回调函数
- c#和Java中的泛型有什么不同?和模板在c++ ?
- 在Java中,流相对于循环的优势是什么?
- Jersey在未找到InjectionManagerFactory时停止工作
- 在Java流是peek真的只是调试?
- Recyclerview不调用onCreateViewHolder
- 将JSON字符串转换为HashMap