找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

简单的递归c++实现如下所示:

#include <iostream>

void generatePermutations(std::string &sequence, int index){
    if(index == sequence.size()){
        std::cout << sequence << "\n";
    } else{
        generatePermutations(sequence, index + 1);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "abc";
    generatePermutations(str, 0);
    return 0;
}

输出:

abc
acb
bac
bca
cba
cab

更新

如果想要存储结果,可以将vector作为函数调用的第三个参数传递。此外,如果您只想要唯一的排列,您可以使用集合。

#include <iostream>
#include <vector>
#include <set>

void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
    if(index == sequence.size()){
        //std::cout << sequence << "\n";
        v.push_back(sequence);
    } else{
        generatePermutations(sequence, index + 1, v);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1, v);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "112";
    std::vector <std::string> permutations;
    generatePermutations(str, 0, permutations);
    std::cout << "Number of permutations " << permutations.size() << "\n";
    for(const std::string &s : permutations){
        std::cout << s << "\n";
    }
    std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
    std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
    for(const std::string &s : uniquePermutations){
        std::cout << s << "\n";
    }
    return 0;
}

输出:

Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211

其他回答

Java中一个非常基本的解决方案是使用递归+设置(以避免重复),如果你想存储和返回解决方案字符串:

public static Set<String> generatePerm(String input)
{
    Set<String> set = new HashSet<String>();
    if (input == "")
        return set;

    Character a = input.charAt(0);

    if (input.length() > 1)
    {
        input = input.substring(1);

        Set<String> permSet = generatePerm(input);

        for (String x : permSet)
        {
            for (int i = 0; i <= x.length(); i++)
            {
                set.add(x.substring(0, i) + a + x.substring(i));
            }
        }
    }
    else
    {
        set.add(a + "");
    }
    return set;
}

另一种简单的方法是遍历字符串,选择尚未使用的字符并将其放入缓冲区,继续循环,直到缓冲区大小等于字符串长度。我更喜欢这个回溯跟踪解决方案,因为:

容易理解 容易避免重复 输出是排序的

下面是java代码:

List<String> permute(String str) {
  if (str == null) {
    return null;
  }

  char[] chars = str.toCharArray();
  boolean[] used = new boolean[chars.length];

  List<String> res = new ArrayList<String>();
  StringBuilder sb = new StringBuilder();

  Arrays.sort(chars);

  helper(chars, used, sb, res);

  return res;
}

void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
  if (sb.length() == chars.length) {
    res.add(sb.toString());
    return;
  }

  for (int i = 0; i < chars.length; i++) {
    // avoid duplicates
    if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
      continue;
    }

    // pick the character that has not used yet
    if (!used[i]) {
      used[i] = true;
      sb.append(chars[i]);

      helper(chars, used, sb, res);

      // back tracking
      sb.deleteCharAt(sb.length() - 1);
      used[i] = false;
    }
  }
}

str输入:1231

输出列表:{1123,1132,1213,1231,1312,1321,2113,2131,2311,3112,3121,3211}

注意,输出是排序的,没有重复的结果。

基于Heap算法的我的实现:

import java.util.ArrayList;
import java.util.List;

public class PermutationString {
public static List<String> permute(char[] str, int n) {
    List<String> permutations = new ArrayList<>();
    if (n == 1) {
        permutations.add(new String(str));
    }
    else {
        for (int i = 0; i < n; i++) {
            permutations.addAll(permute(str, n-1));
            if (n % 2 == 0) {
                swap(str, i, n-1);
            }
            else {
                swap(str, 0, n-1);
            }
        }
    }
    return permutations;
}


public static void swap(char[] str, int i, int j) {
    char temp = str[i];
    str[i] = str[j];
    str[j] = temp;
}

public static void main(String[] args) {

    List<String> permutations = permute("abcdefgh".toCharArray(), 8);

    System.out.println(permutations);

}
}

时间复杂度为O(n!* n), O(n)为空间复杂度。

//循环'整个字符数组,并保持'i'作为你的排列的基础,并像你交换[ab, ba]一样继续寻找组合

public class Permutation {
    //Act as a queue
    private List<Character> list;
    //To remove the duplicates
    private Set<String> set = new HashSet<String>();

    public Permutation(String s) {
        list = new LinkedList<Character>();
        int len = s.length();
        for(int i = 0; i < len; i++) {
            list.add(s.charAt(i));
        }
    }

    public List<String> getStack(Character c, List<Character> list) {
        LinkedList<String> stack = new LinkedList<String>();
        stack.add(""+c);
        for(Character ch: list) {
            stack.add(""+ch);
        }

        return stack;
    }

    public String printCombination(String s1, String s2) {
        //S1 will be a single character
        StringBuilder sb = new StringBuilder();
        String[] strArr = s2.split(",");
        for(String s: strArr) {
            sb.append(s).append(s1);
            sb.append(",");
        }       
        for(String s: strArr) {
            sb.append(s1).append(s);
            sb.append(",");
        }

        return sb.toString();
    }

    public void printPerumtation() {
        int cnt = list.size();

        for(int i = 0; i < cnt; i++) {
            Character c = list.get(0);
            list.remove(0);
            List<String> stack = getStack(c, list);

            while(stack.size() > 1) {
                //Remove the top two elements
                String s2 = stack.remove(stack.size() - 1);
                String s1 = stack.remove(stack.size() - 1);
                String comS = printCombination(s1, s2);
                stack.add(comS);
            }

            String[] perms = (stack.remove(0)).split(",");
            for(String perm: perms) {
                set.add(perm);
            }

            list.add(c);
        }

        for(String s: set) {
            System.out.println(s);
        }
    }
}

我定义了左右两个字符串。一开始,左边是输入字符串,右边是“”。我递归地从左边选择所有可能的字符,并将其添加到右边的末尾。然后,在left-charAt(I)和right+charAt(I)上调用递归函数。我定义了一个类来跟踪生成的排列。

import java.util.HashSet;
import java.util.Set;

public class FindPermutations {

    static class Permutations {
        Set<String> permutations = new HashSet<>();
    }

    /**
     * Building all the permutations by adding chars of left to right one by one.
     *
     * @param left         The left string
     * @param right        The right string
     * @param permutations The permutations
     */
    private void findPermutations(String left, String right, Permutations permutations) {
        int n = left.length();
        if (n == 0) {
            permutations.permutations.add(right);
        }
        for (int i = 0; i < n; i++) {
            findPermutations(left.substring(0, i) + left.substring(i + 1, n), right + left.charAt(i), permutations);
        }
    }

    /**
     * Gets all the permutations of a string s.
     *
     * @param s The input string
     * @return all the permutations of a string s
     */
    public Permutations getPermutations(String s) {
        Permutations permutations = new Permutations();
        findPermutations(s, "", permutations);
        return permutations;
    }

    public static void main(String[] args) {
        FindPermutations findPermutations = new FindPermutations();
        String s = "ABC";
        Permutations permutations = findPermutations.getPermutations(s);
        printPermutations(permutations);
    }

    private static void printPermutations(Permutations permutations) {
        for (String p : permutations.permutations) {
            System.out.println(p);
        }
    }

}

我希望这能有所帮助。