找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

我的实现基于Mark Byers上面的描述:

    static Set<String> permutations(String str){
        if (str.isEmpty()){
            return Collections.singleton(str);
        }else{
            Set <String> set = new HashSet<>();
            for (int i=0; i<str.length(); i++)
                for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
                    set.add(str.charAt(i) + s);
            return set;
        }
    }

其他回答

这里有一个优雅的,非递归的O(n!)解:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }

简单的递归c++实现如下所示:

#include <iostream>

void generatePermutations(std::string &sequence, int index){
    if(index == sequence.size()){
        std::cout << sequence << "\n";
    } else{
        generatePermutations(sequence, index + 1);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "abc";
    generatePermutations(str, 0);
    return 0;
}

输出:

abc
acb
bac
bca
cba
cab

更新

如果想要存储结果,可以将vector作为函数调用的第三个参数传递。此外,如果您只想要唯一的排列,您可以使用集合。

#include <iostream>
#include <vector>
#include <set>

void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
    if(index == sequence.size()){
        //std::cout << sequence << "\n";
        v.push_back(sequence);
    } else{
        generatePermutations(sequence, index + 1, v);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1, v);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "112";
    std::vector <std::string> permutations;
    generatePermutations(str, 0, permutations);
    std::cout << "Number of permutations " << permutations.size() << "\n";
    for(const std::string &s : permutations){
        std::cout << s << "\n";
    }
    std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
    std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
    for(const std::string &s : uniquePermutations){
        std::cout << s << "\n";
    }
    return 0;
}

输出:

Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211

我一直在学习递归思考,第一个打动我的自然解决方案如下。一个更简单的问题是找到一个短一个字母的字符串的排列。我将假设,并相信我的每一根纤维,我的函数可以正确地找到一个字符串的排列,比我目前正在尝试的字符串短一个字母。

Given a string say 'abc', break it into a subproblem of finding permutations of a string one character less which is 'bc'. Once we have permutations of 'bc' we need to know how to combine it with 'a' to get the permutations for 'abc'. This is the core of recursion. Use the solution of a subproblem to solve the current problem. By observation, we can see that inserting 'a' in all the positions of each of the permutations of 'bc' which are 'bc' and 'cb' will give us all the permutations of 'abc'. We have to insert 'a' between adjacent letters and at the front and end of each permutation. For example

我们有bc

“a”+“bc”=“abc”

“b”+“a”+“c”=“bac”

“b”+“a”=“b”

对于'cb'我们有

a + b = acb

“c”+“a”+“b”=“cab”

“cb”+“a”=“cb”

下面的代码片段将说明这一点。下面是该代码片段的工作链接。

def main():
    result = []
    for permutation in ['bc', 'cb']:
        for i in range(len(permutation) + 1):
            result.append(permutation[:i] + 'a' + permutation[i:])
    return result


if __name__ == '__main__':
    print(main())

完整的递归解将是。下面是完整代码的工作链接。

def permutations(s):
    if len(s) == 1 or len(s) == 0:
        return s
    _permutations = []
    for permutation in permutations(s[1:]):
        for i in range(len(permutation) + 1):
            _permutations.append(permutation[:i] + s[0] + permutation[i:])
    return _permutations


def main(s):
    print(permutations(s))


if __name__ == '__main__':
    main('abc')

使用位操作可以很容易地做到这一点。“我们都知道,任何给定的有N个元素的集合有2N个可能的子集。如果我们用一个位来表示子集中的每个元素呢?位可以是0或1,因此我们可以用它来表示对应的元素是否属于这个给定的子集。所以每个位模式代表一个子集。”(复制文本)

private void getPermutation(String str)
        {
            if(str==null)
                return;
            Set<String> StrList = new HashSet<String>();
            StringBuilder strB= new StringBuilder();
            for(int i = 0;i < (1 << str.length()); ++i)
            {
                strB.setLength(0); //clear the StringBuilder
                for(int j = 0;j < str.length() ;++j){
                    if((i & (1 << j))>0){  // to check whether jth bit is set
                        strB.append(str.charAt(j));
                    }
                }
                if(!strB.toString().isEmpty())
                    StrList.add(strB.toString());
            }
            System.out.println(Arrays.toString(StrList.toArray()));
        }
public class Permutation 
{ 
public static void main(String[] args) 
{ 
    String str = "ABC"; 
    int n = str.length(); 
    Permutation permutation = new Permutation(); 
    permutation.permute(str, 0, n-1); 
} 

/** 
* permutation function 
* @param str string to calculate permutation for 
* @param l starting index 
* @param r end index 
*/
private void permute(String str, int l, int r) 
{ 
    if (l == r) 
        System.out.println(str); 
    else
    { 
        for (int i = l; i <= r; i++) 
        { 
            str = swap(str,l,i); 
            permute(str, l+1, r); 
            str = swap(str,l,i); 
        } 
    } 
} 

/** 
* Swap Characters at position 
* @param a string value 
* @param i position 1 
* @param j position 2 
* @return swapped string 
*/
public String swap(String a, int i, int j) 
{ 
    char temp; 
    char[] charArray = a.toCharArray(); 
    temp = charArray[i] ; 
    charArray[i] = charArray[j]; 
    charArray[j] = temp; 
    return String.valueOf(charArray); 
} 

}