找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

/*
     * eg: abc =>{a,bc},{b,ac},{c,ab}
     * =>{ca,b},{cb,a}
     * =>cba,cab
     * =>{ba,c},{bc,a}
     * =>bca,bac
     * =>{ab,c},{ac,b}
     * =>acb,abc
     */
    public void nonRecpermute(String prefix, String word)
    {
        String[] currentstr ={prefix,word};
        Stack<String[]> stack = new Stack<String[]>();
        stack.add(currentstr);
        while(!stack.isEmpty())
        {
            currentstr = stack.pop();
            String currentPrefix = currentstr[0];
            String currentWord = currentstr[1];
            if(currentWord.equals(""))
            {
                System.out.println("Word ="+currentPrefix);
            }
            for(int i=0;i<currentWord.length();i++)
            {
                String[] newstr = new String[2];
                newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
                newstr[1] = currentWord.substring(0, i);
                if(i<currentWord.length()-1)
                {
                    newstr[1] = newstr[1]+currentWord.substring(i+1);
                }
                stack.push(newstr);
            }

        }

    }

其他回答

使用递归。

当输入是空字符串时,唯一的排列就是空字符串。尝试将字符串中的每个字母作为第一个字母,然后使用递归调用找到其余字母的所有排列。

import java.util.ArrayList;
import java.util.List;

class Permutation {
    private static List<String> permutation(String prefix, String str) {
        List<String> permutations = new ArrayList<>();
        int n = str.length();
        if (n == 0) {
            permutations.add(prefix);
        } else {
            for (int i = 0; i < n; i++) {
                permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
            }
        }
        return permutations;
    }

    public static void main(String[] args) {
        List<String> perms = permutation("", "abcd");

        String[] array = new String[perms.size()];
        for (int i = 0; i < perms.size(); i++) {
            array[i] = perms.get(i);
        }

        int x = array.length;

        for (final String anArray : array) {
            System.out.println(anArray);
        }
    }
}

使用递归的简单python解决方案。

def get_permutations(string):

    # base case
    if len(string) <= 1:
        return set([string])

    all_chars_except_last = string[:-1]
    last_char = string[-1]

    # recursive call: get all possible permutations for all chars except last
    permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)

    # put the last char in all possible positions for each of the above permutations
    permutations = set()
    for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
        for position in range(len(all_chars_except_last) + 1):
            permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
            permutations.add(permutation)

    return permutations

这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。

我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。

运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。

在上面的乘积中,1是A, 2是B,以此类推。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

所有之前的贡献者都很好地解释和提供了代码。我想我也应该分享这个方法,因为它可能也会帮助到别人。解决方案基于(堆算法)

一些事情:

注意excel中最后一项的描述只是为了帮助你更好地可视化逻辑。因此,最后一列的实际值将是2,1,0(如果我们要运行代码,因为我们处理的是数组,而数组以0开头)。 交换算法基于当前位置的偶数或奇数值发生。如果你看一下swap方法被调用的位置,你就会明白这一点。你可以看到发生了什么。

事情是这样的:

public static void main(String[] args) {

        String ourword = "abc";
        String[] ourArray = ourword.split("");
        permute(ourArray, ourArray.length);

    }

    private static void swap(String[] ourarray, int right, int left) {
        String temp = ourarray[right];
        ourarray[right] = ourarray[left];
        ourarray[left] = temp;
    }

    public static void permute(String[] ourArray, int currentPosition) {
        if (currentPosition == 1) {
            System.out.println(Arrays.toString(ourArray));
        } else {
            for (int i = 0; i < currentPosition; i++) {
                // subtract one from the last position (here is where you are
                // selecting the the next last item 
                permute(ourArray, currentPosition - 1);

                // if it's odd position
                if (currentPosition % 2 == 1) {
                    swap(ourArray, 0, currentPosition - 1);
                } else {
                    swap(ourArray, i, currentPosition - 1);
                }
            }
        }
    }

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。