找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

其他回答

使用Es6的字符串排列

使用reduce()方法

Const排列= STR => { If (str.length <= 2) 返回str.length === 2 ?[str, str[1] + str[0]]: [str]; 返回str .split (") .reduce ( (acc, letter, index) => acc.concat(排列(str。Slice (0, index) + str.slice(index + 1))。Map (val =>字母+ val)), [] ); }; console.log(排列(STR));

这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。

我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。

运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。

在上面的乘积中,1是A, 2是B,以此类推。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

这是一个具有O(n!)时间复杂度的算法,具有纯递归和直观。

public class words {
static String combinations;
public static List<String> arrlist=new ArrayList<>();
public static void main(String[] args) {
    words obj = new words();

    String str="premandl";
    obj.getcombination(str, str.length()-1, "");
    System.out.println(arrlist);

}


public void getcombination(String str, int charIndex, String output) {

    if (str.length() == 0) {
        arrlist.add(output);
        return ;
    }

    if (charIndex == -1) {
        return ;
    }

    String character = str.toCharArray()[charIndex] + "";
    getcombination(str, --charIndex, output);

    String remaining = "";

    output = output + character;

    remaining = str.substring(0, charIndex + 1) + str.substring(charIndex + 2);

    getcombination(remaining, remaining.length() - 1, output);

}

}