找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

其他回答

在这里和其他论坛给出的所有解决方案中,我最喜欢Mark Byers。这个描述实际上让我自己思考并编写了代码。 可惜我不能投票支持他的解决方案,因为我是新手。 无论如何,这是我对他的描述的实现

public class PermTest {

    public static void main(String[] args) throws Exception {
        String str = "abcdef";
        StringBuffer strBuf = new StringBuffer(str);
        doPerm(strBuf,0);
    }

    private static void doPerm(StringBuffer str, int index){

        if(index == str.length())
            System.out.println(str);            
        else { //recursively solve this by placing all other chars at current first pos
            doPerm(str, index+1);
            for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
                swap(str,index, i);
                doPerm(str, index+1);
                swap(str,i, index);//restore back my string buffer
            }
        }
    }

    private  static void swap(StringBuffer str, int pos1, int pos2){
        char t1 = str.charAt(pos1);
        str.setCharAt(pos1, str.charAt(pos2));
        str.setCharAt(pos2, t1);
    }
}   

我更喜欢这个解决方案,而不是第一个解决方案,因为这个解决方案使用StringBuffer。我不会说我的解决方案没有创建任何临时字符串(它实际上在system.out.println中创建,其中调用StringBuffer的toString())。但我只是觉得这比第一个解决方案好太多的字符串字面值被创建。可能有些性能人员可以根据“内存”来评估这一点(对于“时间”来说,由于额外的“交换”,它已经滞后了)

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

没有递归的Java实现

public Set<String> permutate(String s){
    Queue<String> permutations = new LinkedList<String>();
    Set<String> v = new HashSet<String>();
    permutations.add(s);

    while(permutations.size()!=0){
        String str = permutations.poll();
        if(!v.contains(str)){
            v.add(str);
            for(int i = 0;i<str.length();i++){
                String c = String.valueOf(str.charAt(i));
                permutations.add(str.substring(i+1) + c +  str.substring(0,i));
            }
        }
    }
    return v;
}

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。

下面是一个java实现:

/* All Permutations of a String */

import java.util.*;
import java.lang.*;
import java.io.*;

/* Complexity O(n*n!) */
class Ideone
{
     public static ArrayList<String> strPerm(String str, ArrayList<String> list)
     {
        int len = str.length();
        if(len==1){
            list.add(str);
            return list;
        }

        list = strPerm(str.substring(0,len-1),list);
        int ls = list.size();
        char ap = str.charAt(len-1);
        for(int i=0;i<ls;i++){
            String temp = list.get(i);
            int tl = temp.length();
            for(int j=0;j<=tl;j++){
                list.add(temp.substring(0,j)+ap+temp.substring(j,tl));  
            }
        }

        while(true){
            String temp = list.get(0);
            if(temp.length()<len)
                list.remove(temp);
            else
                break;
        }

        return list;
    }

    public static void main (String[] args) throws java.lang.Exception
    {
        String str = "abc";
        ArrayList<String> list = new ArrayList<>();

        list = strPerm(str,list);
        System.out.println("Total Permutations : "+list.size());
        for(int i=0;i<list.size();i++)
            System.out.println(list.get(i));

    }
}

http://ideone.com/nWPb3k