找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

其中一个简单的解决方案是使用两个指针继续递归地交换字符。

public static void main(String[] args)
{
    String str="abcdefgh";
    perm(str);
}
public static void perm(String str)
{  char[] char_arr=str.toCharArray();
    helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
    if(i==char_arr.length-1)
    {
        // print the shuffled string 
            String str="";
            for(int j=0; j<char_arr.length; j++)
            {
                str=str+char_arr[j];
            }
            System.out.println(str);
    }
    else
    {
    for(int j=i; j<char_arr.length; j++)
    {
        char tmp = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp;
        helper(char_arr,i+1);
        char tmp1 = char_arr[i];
        char_arr[i] = char_arr[j];
        char_arr[j] = tmp1;
    }
}
}

其他回答

//循环'整个字符数组,并保持'i'作为你的排列的基础,并像你交换[ab, ba]一样继续寻找组合

public class Permutation {
    //Act as a queue
    private List<Character> list;
    //To remove the duplicates
    private Set<String> set = new HashSet<String>();

    public Permutation(String s) {
        list = new LinkedList<Character>();
        int len = s.length();
        for(int i = 0; i < len; i++) {
            list.add(s.charAt(i));
        }
    }

    public List<String> getStack(Character c, List<Character> list) {
        LinkedList<String> stack = new LinkedList<String>();
        stack.add(""+c);
        for(Character ch: list) {
            stack.add(""+ch);
        }

        return stack;
    }

    public String printCombination(String s1, String s2) {
        //S1 will be a single character
        StringBuilder sb = new StringBuilder();
        String[] strArr = s2.split(",");
        for(String s: strArr) {
            sb.append(s).append(s1);
            sb.append(",");
        }       
        for(String s: strArr) {
            sb.append(s1).append(s);
            sb.append(",");
        }

        return sb.toString();
    }

    public void printPerumtation() {
        int cnt = list.size();

        for(int i = 0; i < cnt; i++) {
            Character c = list.get(0);
            list.remove(0);
            List<String> stack = getStack(c, list);

            while(stack.size() > 1) {
                //Remove the top two elements
                String s2 = stack.remove(stack.size() - 1);
                String s1 = stack.remove(stack.size() - 1);
                String comS = printCombination(s1, s2);
                stack.add(comS);
            }

            String[] perms = (stack.remove(0)).split(",");
            for(String perm: perms) {
                set.add(perm);
            }

            list.add(c);
        }

        for(String s: set) {
            System.out.println(s);
        }
    }
}

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

使用Es6的字符串排列

使用reduce()方法

Const排列= STR => { If (str.length <= 2) 返回str.length === 2 ?[str, str[1] + str[0]]: [str]; 返回str .split (") .reduce ( (acc, letter, index) => acc.concat(排列(str。Slice (0, index) + str.slice(index + 1))。Map (val =>字母+ val)), [] ); }; console.log(排列(STR));

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

没有递归的Java实现

public Set<String> permutate(String s){
    Queue<String> permutations = new LinkedList<String>();
    Set<String> v = new HashSet<String>();
    permutations.add(s);

    while(permutations.size()!=0){
        String str = permutations.poll();
        if(!v.contains(str)){
            v.add(str);
            for(int i = 0;i<str.length();i++){
                String c = String.valueOf(str.charAt(i));
                permutations.add(str.substring(i+1) + c +  str.substring(0,i));
            }
        }
    }
    return v;
}