找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

其他回答

这是一个更快的解决方案,因为它不受字符串连接计算复杂度O(n^2)的影响。另一方面它是无循环的,完全递归的

public static void main(String[] args) {
    permutation("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
}

private static void permutation(String str) {
    char[] stringArray = str.toCharArray();
    printPermutation(stringArray, 0, stringArray.length, 0, 1);
}

private static void printPermutation(char[] string, int loopCounter, int length, int indexFrom, int indexTo) {
    // Stop condition
    if (loopCounter == length)
        return;

    /* 
     When reaching the end of the array:
     1- Reset loop indices.
     2- Increase length counter. 
    */ 
    if (indexTo == length) {
        indexFrom = 0;
        indexTo = 1;
        ++loopCounter;
    }

    // Print.
    System.out.println(string);

    // Swap from / to indices.
    char temp = string[indexFrom];
    string[indexFrom] = string[indexTo];
    string[indexTo] = temp;

    // Go for next iteration.
    printPermutation(string, loopCounter, length, ++indexFrom, ++indexTo);
}

//循环'整个字符数组,并保持'i'作为你的排列的基础,并像你交换[ab, ba]一样继续寻找组合

public class Permutation {
    //Act as a queue
    private List<Character> list;
    //To remove the duplicates
    private Set<String> set = new HashSet<String>();

    public Permutation(String s) {
        list = new LinkedList<Character>();
        int len = s.length();
        for(int i = 0; i < len; i++) {
            list.add(s.charAt(i));
        }
    }

    public List<String> getStack(Character c, List<Character> list) {
        LinkedList<String> stack = new LinkedList<String>();
        stack.add(""+c);
        for(Character ch: list) {
            stack.add(""+ch);
        }

        return stack;
    }

    public String printCombination(String s1, String s2) {
        //S1 will be a single character
        StringBuilder sb = new StringBuilder();
        String[] strArr = s2.split(",");
        for(String s: strArr) {
            sb.append(s).append(s1);
            sb.append(",");
        }       
        for(String s: strArr) {
            sb.append(s1).append(s);
            sb.append(",");
        }

        return sb.toString();
    }

    public void printPerumtation() {
        int cnt = list.size();

        for(int i = 0; i < cnt; i++) {
            Character c = list.get(0);
            list.remove(0);
            List<String> stack = getStack(c, list);

            while(stack.size() > 1) {
                //Remove the top two elements
                String s2 = stack.remove(stack.size() - 1);
                String s1 = stack.remove(stack.size() - 1);
                String comS = printCombination(s1, s2);
                stack.add(comS);
            }

            String[] perms = (stack.remove(0)).split(",");
            for(String perm: perms) {
                set.add(perm);
            }

            list.add(c);
        }

        for(String s: set) {
            System.out.println(s);
        }
    }
}

这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。

我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。

运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。

在上面的乘积中,1是A, 2是B,以此类推。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

这是一个C解:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>


char* addLetter(char* string, char *c) {
    char* result = malloc(sizeof(string) + 2);
    strcpy(result, string);
    strncat(result, c, 1);
    return result;
}

char* removeLetter(char* string, char *c) {
    char* result = malloc(sizeof(string));
    int j = 0;
    for (int i = 0; i < strlen(string); i++) {
        if (string[i] != *c) {
            result[j++] = string[i];
        }
    }
    result[j] = '\0';

    return result;
}

void makeAnagram(char *anagram, char *letters) {

    if (*letters == '\0') {
        printf("%s\n", anagram);
        return;
    }

    char *c = letters;
    while (*c != '\0') {
        makeAnagram(addLetter(anagram, c),
                    removeLetter(letters, c));
        c++;
    }

}

int main() {

    makeAnagram("", "computer");

    return 0;
}

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/