找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

基于Heap算法的我的实现:

import java.util.ArrayList;
import java.util.List;

public class PermutationString {
public static List<String> permute(char[] str, int n) {
    List<String> permutations = new ArrayList<>();
    if (n == 1) {
        permutations.add(new String(str));
    }
    else {
        for (int i = 0; i < n; i++) {
            permutations.addAll(permute(str, n-1));
            if (n % 2 == 0) {
                swap(str, i, n-1);
            }
            else {
                swap(str, 0, n-1);
            }
        }
    }
    return permutations;
}


public static void swap(char[] str, int i, int j) {
    char temp = str[i];
    str[i] = str[j];
    str[j] = temp;
}

public static void main(String[] args) {

    List<String> permutations = permute("abcdefgh".toCharArray(), 8);

    System.out.println(permutations);

}
}

时间复杂度为O(n!* n), O(n)为空间复杂度。

其他回答

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。

另一种简单的方法是遍历字符串,选择尚未使用的字符并将其放入缓冲区,继续循环,直到缓冲区大小等于字符串长度。我更喜欢这个回溯跟踪解决方案,因为:

容易理解 容易避免重复 输出是排序的

下面是java代码:

List<String> permute(String str) {
  if (str == null) {
    return null;
  }

  char[] chars = str.toCharArray();
  boolean[] used = new boolean[chars.length];

  List<String> res = new ArrayList<String>();
  StringBuilder sb = new StringBuilder();

  Arrays.sort(chars);

  helper(chars, used, sb, res);

  return res;
}

void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
  if (sb.length() == chars.length) {
    res.add(sb.toString());
    return;
  }

  for (int i = 0; i < chars.length; i++) {
    // avoid duplicates
    if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
      continue;
    }

    // pick the character that has not used yet
    if (!used[i]) {
      used[i] = true;
      sb.append(chars[i]);

      helper(chars, used, sb, res);

      // back tracking
      sb.deleteCharAt(sb.length() - 1);
      used[i] = false;
    }
  }
}

str输入:1231

输出列表:{1123,1132,1213,1231,1312,1321,2113,2131,2311,3112,3121,3211}

注意,输出是排序的,没有重复的结果。

使用Es6的字符串排列

使用reduce()方法

Const排列= STR => { If (str.length <= 2) 返回str.length === 2 ?[str, str[1] + str[0]]: [str]; 返回str .split (") .reduce ( (acc, letter, index) => acc.concat(排列(str。Slice (0, index) + str.slice(index + 1))。Map (val =>字母+ val)), [] ); }; console.log(排列(STR));

作为Python生成器,带有现代类型提示:

from typing import Iterator


def permutations(string: str, prefix: str = '') -> Iterator[str]:
    if len(string) == 0:
        yield prefix
    for i, character in enumerate(string):
        yield from permutations(string[:i] + string[i + 1:], prefix + character)


for p in permutations('abcd'):
    print(p)

串的排列:

public static void main(String args[]) {
    permu(0,"ABCD");
}

static void permu(int fixed,String s) {
    char[] chr=s.toCharArray();
    if(fixed==s.length())
        System.out.println(s);
    for(int i=fixed;i<s.length();i++) {
        char c=chr[i];
        chr[i]=chr[fixed];
        chr[fixed]=c;
        permu(fixed+1,new String(chr));
    }   
}