找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

基于Heap算法的我的实现:

import java.util.ArrayList;
import java.util.List;

public class PermutationString {
public static List<String> permute(char[] str, int n) {
    List<String> permutations = new ArrayList<>();
    if (n == 1) {
        permutations.add(new String(str));
    }
    else {
        for (int i = 0; i < n; i++) {
            permutations.addAll(permute(str, n-1));
            if (n % 2 == 0) {
                swap(str, i, n-1);
            }
            else {
                swap(str, 0, n-1);
            }
        }
    }
    return permutations;
}


public static void swap(char[] str, int i, int j) {
    char temp = str[i];
    str[i] = str[j];
    str[j] = temp;
}

public static void main(String[] args) {

    List<String> permutations = permute("abcdefgh".toCharArray(), 8);

    System.out.println(permutations);

}
}

时间复杂度为O(n!* n), O(n)为空间复杂度。

其他回答

下面是一个简单的Java递归解决方案:

public static ArrayList<String> permutations(String s) {
    ArrayList<String> out = new ArrayList<String>();
    if (s.length() == 1) {
        out.add(s);
        return out;
    }
    char first = s.charAt(0);
    String rest = s.substring(1);
    for (String permutation : permutations(rest)) {
        out.addAll(insertAtAllPositions(first, permutation));
    }
    return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
    ArrayList<String> out = new ArrayList<String>();
    for (int i = 0; i <= s.length(); ++i) {
        String inserted = s.substring(0, i) + ch + s.substring(i);
        out.add(inserted);
    }
    return out;
}

我定义了左右两个字符串。一开始,左边是输入字符串,右边是“”。我递归地从左边选择所有可能的字符,并将其添加到右边的末尾。然后,在left-charAt(I)和right+charAt(I)上调用递归函数。我定义了一个类来跟踪生成的排列。

import java.util.HashSet;
import java.util.Set;

public class FindPermutations {

    static class Permutations {
        Set<String> permutations = new HashSet<>();
    }

    /**
     * Building all the permutations by adding chars of left to right one by one.
     *
     * @param left         The left string
     * @param right        The right string
     * @param permutations The permutations
     */
    private void findPermutations(String left, String right, Permutations permutations) {
        int n = left.length();
        if (n == 0) {
            permutations.permutations.add(right);
        }
        for (int i = 0; i < n; i++) {
            findPermutations(left.substring(0, i) + left.substring(i + 1, n), right + left.charAt(i), permutations);
        }
    }

    /**
     * Gets all the permutations of a string s.
     *
     * @param s The input string
     * @return all the permutations of a string s
     */
    public Permutations getPermutations(String s) {
        Permutations permutations = new Permutations();
        findPermutations(s, "", permutations);
        return permutations;
    }

    public static void main(String[] args) {
        FindPermutations findPermutations = new FindPermutations();
        String s = "ABC";
        Permutations permutations = findPermutations.getPermutations(s);
        printPermutations(permutations);
    }

    private static void printPermutations(Permutations permutations) {
        for (String p : permutations.permutations) {
            System.out.println(p);
        }
    }

}

我希望这能有所帮助。

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

这里有一个优雅的,非递归的O(n!)解:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }