找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。

我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。

运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。

在上面的乘积中,1是A, 2是B,以此类推。

飞镖示例:

void main() {

  String insertAt(String a, String b, int index)
  {
    return a.substring(0, index) + b + a.substring(index);
  }

  List<String> Permute(String word) {

    var letters = word.split('');

    var p_list = [ letters.first ];

    for (var c in letters.sublist(1)) {

      var new_list = [ ];

      for (var p in p_list)
        for (int i = 0; i <= p.length; i++)
          new_list.add(insertAt(p, c, i));

      p_list = new_list;
    }

    return p_list;
  }

  print(Permute("ABCD"));

}

其他回答

import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
    public static void main(String[] args) throws IOException {
        hello h = new hello();
        h.printcomp();
    }
      int fact=1;
    public void factrec(int a,int k){
        if(a>=k)
        {fact=fact*k;
        k++;
        factrec(a,k);
        }
        else
        {System.out.println("The string  will have "+fact+" permutations");
        }
        }
    public void printcomp(){
        String str;
        int k;
        Scanner in = new Scanner(System.in);
        System.out.println("enter the string whose permutations has to b found");
        str=in.next();
        k=str.length();
        factrec(k,1);
        String[] arr =new String[fact];
        char[] array = str.toCharArray();
        while(p<fact)
        printcomprec(k,array,arr);
            // if incase u need array containing all the permutation use this
            //for(int d=0;d<fact;d++)         
        //System.out.println(arr[d]);
    }
    int y=1;
    int p = 0;
    int g=1;
    int z = 0;
    public void printcomprec(int k,char array[],String arr[]){
        for (int l = 0; l < k; l++) {
            for (int b=0;b<k-1;b++){
            for (int i=1; i<k-g; i++) {
                char temp;
                String stri = "";
                temp = array[i];
                array[i] = array[i + g];
                array[i + g] = temp;
                for (int j = 0; j < k; j++)
                    stri += array[j];
                arr[z] = stri;
                System.out.println(arr[z] + "   " + p++);
                z++;
            }
            }
            char temp;
            temp=array[0];
            array[0]=array[y];
            array[y]=temp;
            if (y >= k-1)
                y=y-(k-1);
            else
                y++;
        }
        if (g >= k-1)
            g=1;
        else
            g++;
    }

}

让我试着用Kotlin来解决这个问题:

fun <T> List<T>.permutations(): List<List<T>> {
    //escape case
    if (this.isEmpty()) return emptyList()

    if (this.size == 1) return listOf(this)

    if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))

    //recursive case
    return this.flatMap { lastItem ->
        this.minus(lastItem).permutations().map { it.plus(lastItem) }
    }
}

核心概念:将长链表分解成小链表+递归

长答案与示例列表[1,2,3,4]:

即使是一个4种组合的列表,在脑海中列出所有可能的排列已经有点令人困惑了,我们需要做的就是避免这种情况。我们很容易理解如何对大小为0、1和2的列表进行排列,因此我们所需要做的就是将它们分解为这些大小中的任何一个,并将它们正确地组合起来。想象一台头奖机器:这个算法将从右向左旋转,然后写下

当列表大小为0或1时,返回空/列表为1 当列表大小为2时处理(例如[3,4]),并生成2个排列([3,4]& [4,3]) 对于每一项,将其标记为最后一项中的最后一项,并找到列表中其余项目的所有排列。(例如,把[4]放在桌子上,把[1,2,3]重新排列) 现在对它的子元素进行所有的排列,把它自己放回列表的末尾(例如:[1,2,3][,4],[1,3,2][,4],[2,3,1][,4],…)

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。

简单的递归c++实现如下所示:

#include <iostream>

void generatePermutations(std::string &sequence, int index){
    if(index == sequence.size()){
        std::cout << sequence << "\n";
    } else{
        generatePermutations(sequence, index + 1);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "abc";
    generatePermutations(str, 0);
    return 0;
}

输出:

abc
acb
bac
bca
cba
cab

更新

如果想要存储结果,可以将vector作为函数调用的第三个参数传递。此外,如果您只想要唯一的排列,您可以使用集合。

#include <iostream>
#include <vector>
#include <set>

void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
    if(index == sequence.size()){
        //std::cout << sequence << "\n";
        v.push_back(sequence);
    } else{
        generatePermutations(sequence, index + 1, v);
        for(int i = index + 1 ; i < sequence.size() ; ++i){
            std::swap(sequence[index], sequence[i]);
            generatePermutations(sequence, index + 1, v);
            std::swap(sequence[index], sequence[i]);            
        }
    }
}

int main(int argc, char const *argv[])
{
    std::string str = "112";
    std::vector <std::string> permutations;
    generatePermutations(str, 0, permutations);
    std::cout << "Number of permutations " << permutations.size() << "\n";
    for(const std::string &s : permutations){
        std::cout << s << "\n";
    }
    std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
    std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
    for(const std::string &s : uniquePermutations){
        std::cout << s << "\n";
    }
    return 0;
}

输出:

Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211