找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?
当前回答
这可以通过简单地在前面部分结果的所有位置依次插入字符串的每个字母来迭代完成。
我们以[A]开头,与B连成[BA, AB],与C连成[CBA, BCA, BAC, CAB等]。
运行时间将是O(n!),对于测试用例ABCD,它是1 x 2 x 3 x 4。
在上面的乘积中,1是A, 2是B,以此类推。
飞镖示例:
void main() {
String insertAt(String a, String b, int index)
{
return a.substring(0, index) + b + a.substring(index);
}
List<String> Permute(String word) {
var letters = word.split('');
var p_list = [ letters.first ];
for (var c in letters.sublist(1)) {
var new_list = [ ];
for (var p in p_list)
for (int i = 0; i <= p.length; i++)
new_list.add(insertAt(p, c, i));
p_list = new_list;
}
return p_list;
}
print(Permute("ABCD"));
}
其他回答
//插入每个字符到数组列表中
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
基于Mark Byers的回答,我想出了这个解决方案:
JAVA
public class Main {
public static void main(String[] args) {
myPerm("ABCD", 0);
}
private static void myPerm(String str, int index)
{
if (index == str.length()) System.out.println(str);
for (int i = index; i < str.length(); i++)
{
char prefix = str.charAt(i);
String suffix = str.substring(0,i) + str.substring(i+1);
myPerm(prefix + suffix, index + 1);
}
}
}
C#
我还使用新的c# 8.0范围操作符在c#中编写了该函数
class Program
{
static void Main(string[] args)
{
myPerm("ABCD", 0);
}
private static void myPerm(string str, int index)
{
if (index == str.Length) Console.WriteLine(str);
for (int i = index; i < str.Length; i++)
{
char prefix = str[i];
string suffix = str[0..i] + str[(i + 1)..];
myPerm(prefix + suffix, index + 1);
}
}
我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:
/*
myPerm("ABCD",0)
prefix = "A"
suffix = "BCD"
myPerm("ABCD",1)
prefix = "B"
suffix = "ACD"
myPerm("BACD",2)
prefix = "C"
suffix = "BAD"
myPerm("CBAD",3)
prefix = "D"
suffix = "CBA"
myPerm("DCBA",4)
Console.WriteLine("DCBA")
*/
我一直在学习递归思考,第一个打动我的自然解决方案如下。一个更简单的问题是找到一个短一个字母的字符串的排列。我将假设,并相信我的每一根纤维,我的函数可以正确地找到一个字符串的排列,比我目前正在尝试的字符串短一个字母。
Given a string say 'abc', break it into a subproblem of finding permutations of a string one character less which is 'bc'. Once we have permutations of 'bc' we need to know how to combine it with 'a' to get the permutations for 'abc'. This is the core of recursion. Use the solution of a subproblem to solve the current problem. By observation, we can see that inserting 'a' in all the positions of each of the permutations of 'bc' which are 'bc' and 'cb' will give us all the permutations of 'abc'. We have to insert 'a' between adjacent letters and at the front and end of each permutation. For example
我们有bc
“a”+“bc”=“abc”
“b”+“a”+“c”=“bac”
“b”+“a”=“b”
对于'cb'我们有
a + b = acb
“c”+“a”+“b”=“cab”
“cb”+“a”=“cb”
下面的代码片段将说明这一点。下面是该代码片段的工作链接。
def main():
result = []
for permutation in ['bc', 'cb']:
for i in range(len(permutation) + 1):
result.append(permutation[:i] + 'a' + permutation[i:])
return result
if __name__ == '__main__':
print(main())
完整的递归解将是。下面是完整代码的工作链接。
def permutations(s):
if len(s) == 1 or len(s) == 0:
return s
_permutations = []
for permutation in permutations(s[1:]):
for i in range(len(permutation) + 1):
_permutations.append(permutation[:i] + s[0] + permutation[i:])
return _permutations
def main(s):
print(permutations(s))
if __name__ == '__main__':
main('abc')
我们可以用阶乘来计算有多少字符串以某个字母开头。
示例:取输入abcd。(3!) == 6个字符串将以abcd中的每个字母开头。
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列
算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换
注意:上述递归函数将从起始索引中调用。
private void PrintAllPermutations(int[] a, int index, ref int count)
{
if (index == (a.Length - 1))
{
count++;
var s = string.Format("{0}: {1}", count, string.Join(",", a));
Debug.WriteLine(s);
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
this.PrintAllPermutations(a, index + 1, ref count);
Utilities.swap(ref a[i], ref a[index]);
}
}
private int PrintAllPermutations(int[] a)
{
a.ThrowIfNull("a");
int count = 0;
this.PrintAllPermutations(a, index:0, count: ref count);
return count;
}
版本2(与上面相同-但返回排列而不是打印)
private int[][] GetAllPermutations(int[] a, int index)
{
List<int[]> permutations = new List<int[]>();
if (index == (a.Length - 1))
{
permutations.Add(a.ToArray());
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
var r = this.GetAllPermutations(a, index + 1);
permutations.AddRange(r);
Utilities.swap(ref a[i], ref a[index]);
}
return permutations.ToArray();
}
private int[][] GetAllPermutations(int[] p)
{
p.ThrowIfNull("p");
return this.GetAllPermutations(p, 0);
}
单元测试
[TestMethod]
public void PermutationsTests()
{
List<int> input = new List<int>();
int[] output = { 0, 1, 2, 6, 24, 120 };
for (int i = 0; i <= 5; i++)
{
if (i != 0)
{
input.Add(i);
}
Debug.WriteLine("================PrintAllPermutations===================");
int count = this.PrintAllPermutations(input.ToArray());
Assert.IsTrue(count == output[i]);
Debug.WriteLine("=====================GetAllPermutations=================");
var r = this.GetAllPermutations(input.ToArray());
Assert.IsTrue(count == r.Length);
for (int j = 1; j <= r.Length;j++ )
{
string s = string.Format("{0}: {1}", j,
string.Join(",", r[j - 1]));
Debug.WriteLine(s);
}
Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
}
}
推荐文章
- 在流中使用Java 8 foreach循环移动到下一项
- 访问限制:'Application'类型不是API(必需库rt.jar的限制)
- 用Java计算两个日期之间的天数
- 如何配置slf4j-simple
- 在Jar文件中运行类
- 带参数的可运行?
- 我如何得到一个字符串的前n个字符而不检查大小或出界?
- 我可以在Java中设置enum起始值吗?
- Java中的回调函数
- c#和Java中的泛型有什么不同?和模板在c++ ?
- 在Java中,流相对于循环的优势是什么?
- Jersey在未找到InjectionManagerFactory时停止工作
- 在Java流是peek真的只是调试?
- Recyclerview不调用onCreateViewHolder
- 将JSON字符串转换为HashMap