找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

这是一个更快的解决方案,因为它不受字符串连接计算复杂度O(n^2)的影响。另一方面它是无循环的,完全递归的

public static void main(String[] args) {
    permutation("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
}

private static void permutation(String str) {
    char[] stringArray = str.toCharArray();
    printPermutation(stringArray, 0, stringArray.length, 0, 1);
}

private static void printPermutation(char[] string, int loopCounter, int length, int indexFrom, int indexTo) {
    // Stop condition
    if (loopCounter == length)
        return;

    /* 
     When reaching the end of the array:
     1- Reset loop indices.
     2- Increase length counter. 
    */ 
    if (indexTo == length) {
        indexFrom = 0;
        indexTo = 1;
        ++loopCounter;
    }

    // Print.
    System.out.println(string);

    // Swap from / to indices.
    char temp = string[indexFrom];
    string[indexFrom] = string[indexTo];
    string[indexTo] = temp;

    // Go for next iteration.
    printPermutation(string, loopCounter, length, ++indexFrom, ++indexTo);
}

其他回答

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

以下是我在《破解编程面试》(P54)一书中提出的解决方案:

/**
 * List permutations of a string.
 * 
 * @param s the input string
 * @return  the list of permutations
 */
public static ArrayList<String> permutation(String s) {
    // The result
    ArrayList<String> res = new ArrayList<String>();
    // If input string's length is 1, return {s}
    if (s.length() == 1) {
        res.add(s);
    } else if (s.length() > 1) {
        int lastIndex = s.length() - 1;
        // Find out the last character
        String last = s.substring(lastIndex);
        // Rest of the string
        String rest = s.substring(0, lastIndex);
        // Perform permutation on the rest string and
        // merge with the last character
        res = merge(permutation(rest), last);
    }
    return res;
}

/**
 * @param list a result of permutation, e.g. {"ab", "ba"}
 * @param c    the last character
 * @return     a merged new list, e.g. {"cab", "acb" ... }
 */
public static ArrayList<String> merge(ArrayList<String> list, String c) {
    ArrayList<String> res = new ArrayList<>();
    // Loop through all the string in the list
    for (String s : list) {
        // For each string, insert the last character to all possible positions
        // and add them to the new list
        for (int i = 0; i <= s.length(); ++i) {
            String ps = new StringBuffer(s).insert(i, c).toString();
            res.add(ps);
        }
    }
    return res;
}

字符串"abcd"的运行输出:

第一步:合并[a]和b: [ba, ab] 步骤2:Merge [ba, ab]和c: [cba, bca, bac, cab, acb, abc] 第三步:Merge [cba, bca, bac, cab, acb, abc]和d: [dcba, cdba, cbad, cbca, bdcad

让我们以输入abc为例。

从集合(["c"])中的最后一个元素(c)开始,然后将最后第二个元素(b)添加到它的前面,末尾和中间的每个可能位置,使其["bc", "cb"],然后以同样的方式将后面的下一个元素(a)添加到集合中的每个字符串中,使其:

"a" + "bc" = ["abc", "bac", "bca"]  and  "a" + "cb" = ["acb" ,"cab", "cba"] 

因此整个排列:

["abc", "bac", "bca","acb" ,"cab", "cba"]

代码:

public class Test 
{
    static Set<String> permutations;
    static Set<String> result = new HashSet<String>();

    public static Set<String> permutation(String string) {
        permutations = new HashSet<String>();

        int n = string.length();
        for (int i = n - 1; i >= 0; i--) 
        {
            shuffle(string.charAt(i));
        }
        return permutations;
    }

    private static void shuffle(char c) {
        if (permutations.size() == 0) {
            permutations.add(String.valueOf(c));
        } else {
            Iterator<String> it = permutations.iterator();
            for (int i = 0; i < permutations.size(); i++) {

                String temp1;
                for (; it.hasNext();) {
                    temp1 = it.next();
                    for (int k = 0; k < temp1.length() + 1; k += 1) {
                        StringBuilder sb = new StringBuilder(temp1);

                        sb.insert(k, c);

                        result.add(sb.toString());
                    }
                }
            }
            permutations = result;
            //'result' has to be refreshed so that in next run it doesn't contain stale values.
            result = new HashSet<String>();
        }
    }

    public static void main(String[] args) {
        Set<String> result = permutation("abc");

        System.out.println("\nThere are total of " + result.size() + " permutations:");
        Iterator<String> it = result.iterator();
        while (it.hasNext()) {
            System.out.println(it.next());
        }
    }
}
public class StringPermutation {

// Function to print all the permutations of str
static void printPermutn(String str, String ans) {

    // If string is empty
    if (str.length() == 0) {
        System.out.print(ans + " ");
        return;
    }

    for (int i = 0; i < str.length(); i++) {

        // ith character of str
        char ch = str.charAt(i);

        // Rest of the string after excluding
        // the ith character
        String ros = str.substring(0, i) + str.substring(i + 1);

        // Recurvise call
        printPermutn(ros, ans + ch);
    }
}


public static void main(String[] args) {
    String s = "ABC";
    printPermutn(s, "");
}

}

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }