找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

public class Permutation 
{ 
public static void main(String[] args) 
{ 
    String str = "ABC"; 
    int n = str.length(); 
    Permutation permutation = new Permutation(); 
    permutation.permute(str, 0, n-1); 
} 

/** 
* permutation function 
* @param str string to calculate permutation for 
* @param l starting index 
* @param r end index 
*/
private void permute(String str, int l, int r) 
{ 
    if (l == r) 
        System.out.println(str); 
    else
    { 
        for (int i = l; i <= r; i++) 
        { 
            str = swap(str,l,i); 
            permute(str, l+1, r); 
            str = swap(str,l,i); 
        } 
    } 
} 

/** 
* Swap Characters at position 
* @param a string value 
* @param i position 1 
* @param j position 2 
* @return swapped string 
*/
public String swap(String a, int i, int j) 
{ 
    char temp; 
    char[] charArray = a.toCharArray(); 
    temp = charArray[i] ; 
    charArray[i] = charArray[j]; 
    charArray[j] = temp; 
    return String.valueOf(charArray); 
} 

} 

其他回答

使用Set操作建模“依赖于其他选择的选择”更容易理解相关排列 使用依赖排列,可用的选择减少,因为位置被从左到右的选定字符填充。递归调用的终端条件是测试可用选择集是否为空。当满足终端条件时,置换完成,并存储到“结果”列表中。

public static List<String> stringPermutation(String s) {
    List<String> results = new ArrayList<>();
    Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
    stringPermutation(charSet, "", results);
    return results;
}

private static void stringPermutation(Set<Character> charSet, 
        String prefix, List<String> results) {
    if (charSet.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (Character c : charSet) {
        Set<Character> newSet = new HashSet<>(charSet);
        newSet.remove(c);
        stringPermutation(newSet, prefix + c, results);
    }
} 

该代码可以泛化为一组对象查找排列。在本例中,我使用了一组颜色。

public enum Color{
    ORANGE,RED,BULE,GREEN,YELLOW;
}

public static List<List<Color>> colorPermutation(Set<Color> colors) {
    List<List<Color>> results = new ArrayList<>();
    List<Color> prefix = new ArrayList<>();
    permutation(colors, prefix, results);
    return results;
}

private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
    if (set.isEmpty()) {
        results.add(prefix);
        return;
    }
    for (T t : set) {
        Set<T> newSet = new HashSet<>(set);
        List<T> newPrefix = new ArrayList<>(prefix);
        newSet.remove(t);
        newPrefix.add(t);
        permutation(newSet, newPrefix, results);
    }
} 

测试代码。

public static void main(String[] args) {
    List<String> stringPerm = stringPermutation("abcde");
    System.out.println("# of permutations:" + stringPerm.size());
    stringPerm.stream().forEach(e -> System.out.println(e));

    Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
    List<List<Color>> colorPerm = colorPermutation(colorSet);
    System.out.println("# of permutations:" + colorPerm.size());
    colorPerm.stream().forEach(e -> System.out.println(e));
}

//插入每个字符到数组列表中

static ArrayList al = new ArrayList();

private static void findPermutation (String str){
    for (int k = 0; k < str.length(); k++) {
        addOneChar(str.charAt(k));
    }
}

//insert one char into ArrayList
private static void addOneChar(char ch){
    String lastPerStr;
    String tempStr;
    ArrayList locAl = new ArrayList();
    for (int i = 0; i < al.size(); i ++ ){
        lastPerStr = al.get(i).toString();
        //System.out.println("lastPerStr: " + lastPerStr);
        for (int j = 0; j <= lastPerStr.length(); j++) {
            tempStr = lastPerStr.substring(0,j) + ch + 
                    lastPerStr.substring(j, lastPerStr.length());
            locAl.add(tempStr);
            //System.out.println("tempStr: " + tempStr);
        }
    }
    if(al.isEmpty()){
        al.add(ch);
    } else {
        al.clear();
        al = locAl;
    }
}

private static void printArrayList(ArrayList al){
    for (int i = 0; i < al.size(); i++) {
        System.out.print(al.get(i) + "  ");
    }
}

这是一个C解:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>


char* addLetter(char* string, char *c) {
    char* result = malloc(sizeof(string) + 2);
    strcpy(result, string);
    strncat(result, c, 1);
    return result;
}

char* removeLetter(char* string, char *c) {
    char* result = malloc(sizeof(string));
    int j = 0;
    for (int i = 0; i < strlen(string); i++) {
        if (string[i] != *c) {
            result[j++] = string[i];
        }
    }
    result[j] = '\0';

    return result;
}

void makeAnagram(char *anagram, char *letters) {

    if (*letters == '\0') {
        printf("%s\n", anagram);
        return;
    }

    char *c = letters;
    while (*c != '\0') {
        makeAnagram(addLetter(anagram, c),
                    removeLetter(letters, c));
        c++;
    }

}

int main() {

    makeAnagram("", "computer");

    return 0;
}

Java中一个非常基本的解决方案是使用递归+设置(以避免重复),如果你想存储和返回解决方案字符串:

public static Set<String> generatePerm(String input)
{
    Set<String> set = new HashSet<String>();
    if (input == "")
        return set;

    Character a = input.charAt(0);

    if (input.length() > 1)
    {
        input = input.substring(1);

        Set<String> permSet = generatePerm(input);

        for (String x : permSet)
        {
            for (int i = 0; i <= x.length(); i++)
            {
                set.add(x.substring(0, i) + a + x.substring(i));
            }
        }
    }
    else
    {
        set.add(a + "");
    }
    return set;
}

让我试着用Kotlin来解决这个问题:

fun <T> List<T>.permutations(): List<List<T>> {
    //escape case
    if (this.isEmpty()) return emptyList()

    if (this.size == 1) return listOf(this)

    if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))

    //recursive case
    return this.flatMap { lastItem ->
        this.minus(lastItem).permutations().map { it.plus(lastItem) }
    }
}

核心概念:将长链表分解成小链表+递归

长答案与示例列表[1,2,3,4]:

即使是一个4种组合的列表,在脑海中列出所有可能的排列已经有点令人困惑了,我们需要做的就是避免这种情况。我们很容易理解如何对大小为0、1和2的列表进行排列,因此我们所需要做的就是将它们分解为这些大小中的任何一个,并将它们正确地组合起来。想象一台头奖机器:这个算法将从右向左旋转,然后写下

当列表大小为0或1时,返回空/列表为1 当列表大小为2时处理(例如[3,4]),并生成2个排列([3,4]& [4,3]) 对于每一项,将其标记为最后一项中的最后一项,并找到列表中其余项目的所有排列。(例如,把[4]放在桌子上,把[1,2,3]重新排列) 现在对它的子元素进行所有的排列,把它自己放回列表的末尾(例如:[1,2,3][,4],[1,3,2][,4],[2,3,1][,4],…)