找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

我们可以用阶乘来计算有多少字符串以某个字母开头。

示例:取输入abcd。(3!) == 6个字符串将以abcd中的每个字母开头。

static public int facts(int x){
    int sum = 1;
    for (int i = 1; i < x; i++) {
        sum *= (i+1);
    }
    return sum;
}

public static void permutation(String str) {
    char[] str2 = str.toCharArray();
    int n = str2.length;
    int permutation = 0;
    if (n == 1) {
        System.out.println(str2[0]);
    } else if (n == 2) {
        System.out.println(str2[0] + "" + str2[1]);
        System.out.println(str2[1] + "" + str2[0]);
    } else {
        for (int i = 0; i < n; i++) {
            if (true) {
                char[] str3 = str.toCharArray();
                char temp = str3[i];
                str3[i] = str3[0];
                str3[0] = temp;
                str2 = str3;
            }

            for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
                if (j != n-1) {
                    char temp1 = str2[j+1];
                    str2[j+1] = str2[j];
                    str2[j] = temp1;
                } else {
                    char temp1 = str2[n-1];
                    str2[n-1] = str2[1];
                    str2[1] = temp1;
                    j = 1;
                } // end of else block
                permutation++;
                System.out.print("permutation " + permutation + " is   -> ");
                for (int k = 0; k < n; k++) {
                    System.out.print(str2[k]);
                } // end of loop k
                System.out.println();
            } // end of loop j
        } // end of loop i
    }
}

其他回答

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

python实现

def getPermutation(s, prefix=''):
        if len(s) == 0:
                print prefix
        for i in range(len(s)):
                getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )



getPermutation('abcd','')

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/

让我们以输入abc为例。

从集合(["c"])中的最后一个元素(c)开始,然后将最后第二个元素(b)添加到它的前面,末尾和中间的每个可能位置,使其["bc", "cb"],然后以同样的方式将后面的下一个元素(a)添加到集合中的每个字符串中,使其:

"a" + "bc" = ["abc", "bac", "bca"]  and  "a" + "cb" = ["acb" ,"cab", "cba"] 

因此整个排列:

["abc", "bac", "bca","acb" ,"cab", "cba"]

代码:

public class Test 
{
    static Set<String> permutations;
    static Set<String> result = new HashSet<String>();

    public static Set<String> permutation(String string) {
        permutations = new HashSet<String>();

        int n = string.length();
        for (int i = n - 1; i >= 0; i--) 
        {
            shuffle(string.charAt(i));
        }
        return permutations;
    }

    private static void shuffle(char c) {
        if (permutations.size() == 0) {
            permutations.add(String.valueOf(c));
        } else {
            Iterator<String> it = permutations.iterator();
            for (int i = 0; i < permutations.size(); i++) {

                String temp1;
                for (; it.hasNext();) {
                    temp1 = it.next();
                    for (int k = 0; k < temp1.length() + 1; k += 1) {
                        StringBuilder sb = new StringBuilder(temp1);

                        sb.insert(k, c);

                        result.add(sb.toString());
                    }
                }
            }
            permutations = result;
            //'result' has to be refreshed so that in next run it doesn't contain stale values.
            result = new HashSet<String>();
        }
    }

    public static void main(String[] args) {
        Set<String> result = permutation("abc");

        System.out.println("\nThere are total of " + result.size() + " permutations:");
        Iterator<String> it = result.iterator();
        while (it.hasNext()) {
            System.out.println(it.next());
        }
    }
}
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
    public static void main(String[] args) throws IOException {
        hello h = new hello();
        h.printcomp();
    }
      int fact=1;
    public void factrec(int a,int k){
        if(a>=k)
        {fact=fact*k;
        k++;
        factrec(a,k);
        }
        else
        {System.out.println("The string  will have "+fact+" permutations");
        }
        }
    public void printcomp(){
        String str;
        int k;
        Scanner in = new Scanner(System.in);
        System.out.println("enter the string whose permutations has to b found");
        str=in.next();
        k=str.length();
        factrec(k,1);
        String[] arr =new String[fact];
        char[] array = str.toCharArray();
        while(p<fact)
        printcomprec(k,array,arr);
            // if incase u need array containing all the permutation use this
            //for(int d=0;d<fact;d++)         
        //System.out.println(arr[d]);
    }
    int y=1;
    int p = 0;
    int g=1;
    int z = 0;
    public void printcomprec(int k,char array[],String arr[]){
        for (int l = 0; l < k; l++) {
            for (int b=0;b<k-1;b++){
            for (int i=1; i<k-g; i++) {
                char temp;
                String stri = "";
                temp = array[i];
                array[i] = array[i + g];
                array[i + g] = temp;
                for (int j = 0; j < k; j++)
                    stri += array[j];
                arr[z] = stri;
                System.out.println(arr[z] + "   " + p++);
                z++;
            }
            }
            char temp;
            temp=array[0];
            array[0]=array[y];
            array[y]=temp;
            if (y >= k-1)
                y=y-(k-1);
            else
                y++;
        }
        if (g >= k-1)
            g=1;
        else
            g++;
    }

}