找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。

其他回答

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}

为排列和组合添加更详细的NcK/NcR

public static void combinationNcK(List<String> inputList, String prefix, int chooseCount, List<String> resultList) {
    if (chooseCount == 0)
        resultList.add(prefix);
    else {
        for (int i = 0; i < inputList.size(); i++)
            combinationNcK(inputList.subList(i + 1, inputList.size()), prefix + "," + inputList.get(i), chooseCount - 1, resultList);

        // Finally print once all combinations are done
        if (prefix.equalsIgnoreCase("")) {
            resultList.stream().map(str -> str.substring(1)).forEach(System.out::println);
        }
    }
}

public static void permNcK(List<String> inputList, int chooseCount, List<String> resultList) {
    for (int count = 0; count < inputList.size(); count++) {
        permNcK(inputList, "", chooseCount, resultList);
        resultList = new ArrayList<String>();
        Collections.rotate(inputList, 1);
        System.out.println("-------------------------");
    }

}

public static void permNcK(List<String> inputList, String prefix, int chooseCount, List<String> resultList) {
    if (chooseCount == 0)
        resultList.add(prefix);
    else {
        for (int i = 0; i < inputList.size(); i++)
            combinationNcK(inputList.subList(i + 1, inputList.size()), prefix + "," + inputList.get(i), chooseCount - 1, resultList);

        // Finally print once all combinations are done
        if (prefix.equalsIgnoreCase("")) {
            resultList.stream().map(str -> str.substring(1)).forEach(System.out::println);
        }
    }
}

public static void main(String[] args) {
    List<String> positions = Arrays.asList(new String[] { "1", "2", "3", "4", "5", "6", "7", "8" });
    List<String> resultList = new ArrayList<String>();
    //combinationNcK(positions, "", 3, resultList);

    permNcK(positions, 3, resultList);

}

使用递归。

当输入是空字符串时,唯一的排列就是空字符串。尝试将字符串中的每个字母作为第一个字母,然后使用递归调用找到其余字母的所有排列。

import java.util.ArrayList;
import java.util.List;

class Permutation {
    private static List<String> permutation(String prefix, String str) {
        List<String> permutations = new ArrayList<>();
        int n = str.length();
        if (n == 0) {
            permutations.add(prefix);
        } else {
            for (int i = 0; i < n; i++) {
                permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
            }
        }
        return permutations;
    }

    public static void main(String[] args) {
        List<String> perms = permutation("", "abcd");

        String[] array = new String[perms.size()];
        for (int i = 0; i < perms.size(); i++) {
            array[i] = perms.get(i);
        }

        int x = array.length;

        for (final String anArray : array) {
            System.out.println(anArray);
        }
    }
}

在python中

def perms(in_str, prefix=""):
if not len(in_str) :
    print(prefix)
else:        
    for i in range(0, len(in_str)):
        perms(in_str[:i] + in_str[i + 1:], prefix + in_str[i])

perms('ASD')

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }