找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

这就是我通过对排列和递归函数调用的基本理解所做的。虽然要花点时间,但都是独立完成的。

public class LexicographicPermutations {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    String s="abc";
    List<String>combinations=new ArrayList<String>();
    combinations=permutations(s);
    Collections.sort(combinations);
    System.out.println(combinations);
}

private static List<String> permutations(String s) {
    // TODO Auto-generated method stub
    List<String>combinations=new ArrayList<String>();
    if(s.length()==1){
        combinations.add(s);
    }
    else{
        for(int i=0;i<s.length();i++){
            List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
            for (String string : temp) {
                combinations.add(s.charAt(i)+string);
            }
        }
    }
    return combinations;
}}

生成输出为[abc, acb, bac, bca, cab, cba]。

它背后的基本逻辑是

对于每个字符,将其视为第一个字符,并找出剩余字符的组合。例[abc](abc的组合)->。

a->[bc](a x Combination of (bc))->{abc,acb} b->[ac](b x组合(ac))->{bac,bca} c->[ab](c x Combination of (ab))->{cab,cba}

然后递归地分别调用每个[bc],[ac]和[ab]。

其他回答

递归Python解决方案

def permute(input_str):
    _permute("", input_str)

def _permute(prefix, str_to_permute):
    if str_to_permute == '':
        print(prefix)

    else:
        for i in range(len(str_to_permute)): 
            _permute(prefix+str_to_permute[i], str_to_permute[0:i] + str_to_permute[i+1:])

if __name__ == '__main__':
    permute('foobar')

基于Mark Byers的回答,我的python实现:

def permutations(string):
    if len(string) == 1:
        return [string]
    permutations=[]
    for i in range(len(string)):
        for perm in permutations(string[:i]+string[i+1:]):
            permutations.append(string[i] + perm)
    return permutations

如果有人想要生成排列来做一些事情,而不是通过void方法打印它们:

static List<int[]> permutations(int n) {

    class Perm {
        private final List<int[]> permutations = new ArrayList<>();

        private void perm(int[] array, int step) {
            if (step == 1) permutations.add(array.clone());
            else for (int i = 0; i < step; i++) {
                perm(array, step - 1);
                int j = (step % 2 == 0) ? i : 0;
                swap(array, step - 1, j);
            }
        }

        private void swap(int[] array, int i, int j) {
            int buffer = array[i];
            array[i] = array[j];
            array[j] = buffer;
        }

    }

    int[] nVector  = new int[n];
    for (int i = 0; i < n; i++) nVector [i] = i;

    Perm perm = new Perm();
    perm.perm(nVector, n);
    return perm.permutations;

}

以下是我在《破解编程面试》(P54)一书中提出的解决方案:

/**
 * List permutations of a string.
 * 
 * @param s the input string
 * @return  the list of permutations
 */
public static ArrayList<String> permutation(String s) {
    // The result
    ArrayList<String> res = new ArrayList<String>();
    // If input string's length is 1, return {s}
    if (s.length() == 1) {
        res.add(s);
    } else if (s.length() > 1) {
        int lastIndex = s.length() - 1;
        // Find out the last character
        String last = s.substring(lastIndex);
        // Rest of the string
        String rest = s.substring(0, lastIndex);
        // Perform permutation on the rest string and
        // merge with the last character
        res = merge(permutation(rest), last);
    }
    return res;
}

/**
 * @param list a result of permutation, e.g. {"ab", "ba"}
 * @param c    the last character
 * @return     a merged new list, e.g. {"cab", "acb" ... }
 */
public static ArrayList<String> merge(ArrayList<String> list, String c) {
    ArrayList<String> res = new ArrayList<>();
    // Loop through all the string in the list
    for (String s : list) {
        // For each string, insert the last character to all possible positions
        // and add them to the new list
        for (int i = 0; i <= s.length(); ++i) {
            String ps = new StringBuffer(s).insert(i, c).toString();
            res.add(ps);
        }
    }
    return res;
}

字符串"abcd"的运行输出:

第一步:合并[a]和b: [ba, ab] 步骤2:Merge [ba, ab]和c: [cba, bca, bac, cab, acb, abc] 第三步:Merge [cba, bca, bac, cab, acb, abc]和d: [dcba, cdba, cbad, cbca, bdcad

递归是不必要的,甚至你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。

这里有关于这个algorihtm的很好的信息。

对于c#开发人员来说,这里有更有用的实现。

public static void main(String[] args) {
    String word = "12345";

    Character[] array = ArrayUtils.toObject(word.toCharArray());
    long[] factorials = Permutation.getFactorials(array.length + 1);

    for (long i = 0; i < factorials[array.length]; i++) {
        Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
        printPermutation(permutation);
    }
}

private static void printPermutation(Character[] permutation) {
    for (int i = 0; i < permutation.length; i++) {
        System.out.print(permutation[i]);
    }
    System.out.println();
}

该算法计算每个排列的时间和空间复杂度为O(N)。

public class Permutation {
    public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
        int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
        T[] permutation = generatePermutation(array, sequence);

        return permutation;
    }

    public static <T> T[] generatePermutation(T[] array, int[] sequence) {
        T[] clone = array.clone();

        for (int i = 0; i < clone.length - 1; i++) {
            swap(clone, i, i + sequence[i]);
        }

        return clone;
    }

    private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
        int[] sequence = new int[size];

        for (int j = 0; j < sequence.length; j++) {
            long factorial = factorials[sequence.length - j];
            sequence[j] = (int) (permutationNumber / factorial);
            permutationNumber = (int) (permutationNumber % factorial);
        }

        return sequence;
    }

    private static <T> void swap(T[] array, int i, int j) {
        T t = array[i];
        array[i] = array[j];
        array[j] = t;
    }

    public static long[] getFactorials(int length) {
        long[] factorials = new long[length];
        long factor = 1;

        for (int i = 0; i < length; i++) {
            factor *= i <= 1 ? 1 : i;
            factorials[i] = factor;
        }

        return factorials;
    }
}