找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

使用递归。

当输入是空字符串时,唯一的排列就是空字符串。尝试将字符串中的每个字母作为第一个字母,然后使用递归调用找到其余字母的所有排列。

import java.util.ArrayList;
import java.util.List;

class Permutation {
    private static List<String> permutation(String prefix, String str) {
        List<String> permutations = new ArrayList<>();
        int n = str.length();
        if (n == 0) {
            permutations.add(prefix);
        } else {
            for (int i = 0; i < n; i++) {
                permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
            }
        }
        return permutations;
    }

    public static void main(String[] args) {
        List<String> perms = permutation("", "abcd");

        String[] array = new String[perms.size()];
        for (int i = 0; i < perms.size(); i++) {
            array[i] = perms.get(i);
        }

        int x = array.length;

        for (final String anArray : array) {
            System.out.println(anArray);
        }
    }
}

其他回答

基于Mark Byers的回答,我的python实现:

def permutations(string):
    if len(string) == 1:
        return [string]
    permutations=[]
    for i in range(len(string)):
        for perm in permutations(string[:i]+string[i+1:]):
            permutations.append(string[i] + perm)
    return permutations

我一直在学习递归思考,第一个打动我的自然解决方案如下。一个更简单的问题是找到一个短一个字母的字符串的排列。我将假设,并相信我的每一根纤维,我的函数可以正确地找到一个字符串的排列,比我目前正在尝试的字符串短一个字母。

Given a string say 'abc', break it into a subproblem of finding permutations of a string one character less which is 'bc'. Once we have permutations of 'bc' we need to know how to combine it with 'a' to get the permutations for 'abc'. This is the core of recursion. Use the solution of a subproblem to solve the current problem. By observation, we can see that inserting 'a' in all the positions of each of the permutations of 'bc' which are 'bc' and 'cb' will give us all the permutations of 'abc'. We have to insert 'a' between adjacent letters and at the front and end of each permutation. For example

我们有bc

“a”+“bc”=“abc”

“b”+“a”+“c”=“bac”

“b”+“a”=“b”

对于'cb'我们有

a + b = acb

“c”+“a”+“b”=“cab”

“cb”+“a”=“cb”

下面的代码片段将说明这一点。下面是该代码片段的工作链接。

def main():
    result = []
    for permutation in ['bc', 'cb']:
        for i in range(len(permutation) + 1):
            result.append(permutation[:i] + 'a' + permutation[i:])
    return result


if __name__ == '__main__':
    print(main())

完整的递归解将是。下面是完整代码的工作链接。

def permutations(s):
    if len(s) == 1 or len(s) == 0:
        return s
    _permutations = []
    for permutation in permutations(s[1:]):
        for i in range(len(permutation) + 1):
            _permutations.append(permutation[:i] + s[0] + permutation[i:])
    return _permutations


def main(s):
    print(permutations(s))


if __name__ == '__main__':
    main('abc')

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/

简单的解决方案,利用swift语言的特点,数组是值类型。

func permutation(chrs: [String], arr: [String], result: inout [[String]]) {
   if arr.count == chrs.count {
       result.append(arr)
       return
   }

   for chr in chrs {
       var arr = arr
       if !arr.contains(chr) {
           arr.append(chr)
           permutation(chrs: chrs, arr: arr, result: &result)
       }
   }
}

func test() {
   var result = [[String]]()
   let chrs = ["a", "b", "c", "d"]
   permutation(chrs: chrs, arr: [], result: &result)
}

复杂度O(n * n!)

倒计时Quickperm算法的通用实现,表示#1(可伸缩,非递归)。

/**
 * Generate permutations based on the
 * Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
 */
public static <T> List<List<T>> generatePermutations(List<T> list) {
    List<T> in = new ArrayList<>(list);
    List<List<T>> out = new ArrayList<>(factorial(list.size()));

    int n = list.size();
    int[] p = new int[n +1];
    for (int i = 0; i < p.length; i ++) {
        p[i] = i;
    }
    int i = 0;
    while (i < n) {
        p[i]--;
        int j = 0;
        if (i % 2 != 0) { // odd?
            j = p[i];
        }
        // swap
        T iTmp = in.get(i);
        in.set(i, in.get(j));
        in.set(j, iTmp);

        i = 1;
        while (p[i] == 0){
            p[i] = i;
            i++;
        }
        out.add(new ArrayList<>(in));
    }
    return out;
}

private static int factorial(int num) {
    int count = num;
    while (num != 1) {
        count *= --num;
    }
    return count;
}

它需要list,因为泛型不能很好地使用数组。