当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。

那么,这两种方法有什么不同呢?


当前回答

简单地说,线性回归是一种回归算法,它输出一个可能连续和无限的值;逻辑回归被认为是一种二进制分类器算法,它输出输入属于标签(0或1)的“概率”。

其他回答

它们在解决解决方案方面非常相似,但正如其他人所说,一个(逻辑回归)是用于预测类别“适合”(Y/N或1/0),另一个(线性回归)是用于预测值。

所以如果你想预测你是否有癌症Y/N(或概率)-使用逻辑。如果你想知道你能活多少年,用线性回归吧!

线性回归和逻辑回归的基本区别是: 线性回归用于预测一个连续的或数值,但当我们寻找预测一个值,是分类逻辑回归进入画面。

二元分类采用逻辑回归。

Regression means continuous variable, Linear means there is linear relation between y and x. Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x). y=b0+ b1*x1 We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data. It is a equation of line which gives continuous value from x=0 to very large value. This line is called Linear regression model.

逻辑回归是一种分类技术。不要被术语回归所误导。这里我们预测y=0还是1。

在这里,我们首先需要从下面的公式中找出给定x的p(y=1) (y=1的w概率)。

概率p通过下面的公式与y相关

Ex=我们可以将患癌几率超过50%的肿瘤分类为1,将患癌几率低于50%的肿瘤分类为0。

这里红点被预测为0,而绿点被预测为1。

| Basis                                                           | Linear                                                                         | Logistic                                                                                                            |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic                                                           | The data is modelled using a straight line.                                    | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required                                                                    | Not required                                                                                                        |
| The independent variable                                        | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist).                                              |

在线性回归中,结果(因变量)是连续的。它可以有无限个可能值中的任意一个。在逻辑回归中,结果(因变量)只有有限数量的可能值。

例如,如果X包含以平方英尺为单位的房屋面积,而Y包含这些房屋的相应销售价格,您可以使用线性回归来预测销售价格作为房屋大小的函数。虽然可能的销售价格实际上可能没有任何值,但有很多可能的值,因此可以选择线性回归模型。

相反,如果你想根据房子的大小来预测房子是否会卖到20万美元以上,你会使用逻辑回归。可能的输出是Yes,房子将以超过20万美元的价格出售,或者No,房子不会。