当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。

那么,这两种方法有什么不同呢?


当前回答

简单地说,线性回归是一种回归算法,它输出一个可能连续和无限的值;逻辑回归被认为是一种二进制分类器算法,它输出输入属于标签(0或1)的“概率”。

其他回答

在线性回归中,结果(因变量)是连续的。它可以有无限个可能值中的任意一个。在逻辑回归中,结果(因变量)只有有限数量的可能值。

例如,如果X包含以平方英尺为单位的房屋面积,而Y包含这些房屋的相应销售价格,您可以使用线性回归来预测销售价格作为房屋大小的函数。虽然可能的销售价格实际上可能没有任何值,但有很多可能的值,因此可以选择线性回归模型。

相反,如果你想根据房子的大小来预测房子是否会卖到20万美元以上,你会使用逻辑回归。可能的输出是Yes,房子将以超过20万美元的价格出售,或者No,房子不会。

基本区别:

线性回归基本上是一个回归模型,这意味着它将给出一个函数的非离散/连续输出。这个方法给出了值。例如,给定x, f(x)是多少

例如,给定一个由不同因素组成的训练集和训练后的房地产价格,我们可以提供所需的因素来确定房地产价格。

逻辑回归基本上是一种二元分类算法,这意味着这里函数的输出值是离散的。例如:对于给定的x,如果f(x)>阈值将其分类为1,否则将其分类为0。

例如,给定一组脑瘤大小作为训练数据,我们可以使用大小作为输入来确定它是良性肿瘤还是恶性肿瘤。因此这里的输出不是0就是1。

这里的函数基本上是假设函数

在线性回归中,结果是连续的,而在逻辑回归中,结果只有有限数量的可能值(离散的)。

例子: 在一种情况下,x的给定值是一个地块的平方英尺大小,然后预测y的比率是在线性回归下。

相反,如果你想根据面积预测地块是否会以超过30万卢比的价格出售,你将使用逻辑回归。可能的输出是Yes,该地块的售价将超过30万卢比,或者No。

逻辑回归用于预测分类输出,如是/否,低/中/高等。你基本上有2种类型的逻辑回归二元逻辑回归(是/否,批准/不批准)或多类逻辑回归(低/中/高,0-9等数字)

另一方面,线性回归是因变量(y)是连续的。 Y = mx + c是一个简单的线性回归方程(m =斜率,c是Y截距)。多元线性回归有不止一个自变量(x1,x2,x3,…)等)

| Basis                                                           | Linear                                                                         | Logistic                                                                                                            |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic                                                           | The data is modelled using a straight line.                                    | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required                                                                    | Not required                                                                                                        |
| The independent variable                                        | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist).                                              |