当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。

那么,这两种方法有什么不同呢?


当前回答

Regression means continuous variable, Linear means there is linear relation between y and x. Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x). y=b0+ b1*x1 We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data. It is a equation of line which gives continuous value from x=0 to very large value. This line is called Linear regression model.

逻辑回归是一种分类技术。不要被术语回归所误导。这里我们预测y=0还是1。

在这里,我们首先需要从下面的公式中找出给定x的p(y=1) (y=1的w概率)。

概率p通过下面的公式与y相关

Ex=我们可以将患癌几率超过50%的肿瘤分类为1,将患癌几率低于50%的肿瘤分类为0。

这里红点被预测为0,而绿点被预测为1。

其他回答

非常同意以上的评论。 除此之外,还有一些不同之处

在线性回归中,残差被假设为正态分布。 在逻辑回归中,残差需要是独立的,但不是正态分布。

线性回归假设解释变量值的恒定变化导致响应变量的恒定变化。 如果响应变量的值代表概率(在逻辑回归中),则此假设不成立。

广义线性模型(GLM)不假设因变量和自变量之间存在线性关系。但在logit模型中,它假设link函数与自变量之间是线性关系。

线性回归和逻辑回归的基本区别是: 线性回归用于预测一个连续的或数值,但当我们寻找预测一个值,是分类逻辑回归进入画面。

二元分类采用逻辑回归。

在线性回归的情况下,结果是连续的,而在逻辑回归的情况下,结果是离散的(非连续的)

要执行线性回归,我们需要因变量和自变量之间的线性关系。但要执行逻辑回归,我们不需要因变量和自变量之间的线性关系。

线性回归是在数据中拟合一条直线,而逻辑回归是在数据中拟合一条曲线。

线性回归是机器学习的一种回归算法,逻辑回归是机器学习的一种分类算法。

线性回归假设因变量呈高斯(或正态)分布。逻辑回归假设因变量为二项分布。

Regression means continuous variable, Linear means there is linear relation between y and x. Ex= You are trying to predict salary from no of years of experience. So here salary is independent variable(y) and yrs of experience is dependent variable(x). y=b0+ b1*x1 We are trying to find optimum value of constant b0 and b1 which will give us best fitting line for your observation data. It is a equation of line which gives continuous value from x=0 to very large value. This line is called Linear regression model.

逻辑回归是一种分类技术。不要被术语回归所误导。这里我们预测y=0还是1。

在这里,我们首先需要从下面的公式中找出给定x的p(y=1) (y=1的w概率)。

概率p通过下面的公式与y相关

Ex=我们可以将患癌几率超过50%的肿瘤分类为1,将患癌几率低于50%的肿瘤分类为0。

这里红点被预测为0,而绿点被预测为1。

简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。

另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。