我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
还有一个,虽然我用的是循环,但这比数学操作数要快得多
功率两“地板”选项:
int power = 1;
while (x >>= 1) power <<= 1;
两个“ceil”选项的力量:
int power = 2;
x--; // <<-- UPDATED
while (x >>= 1) power <<= 1;
更新
正如在评论中提到的,在cell中有错误,它的结果是错误的。
以下是全部功能:
unsigned power_floor(unsigned x) {
int power = 1;
while (x >>= 1) power <<= 1;
return power;
}
unsigned power_ceil(unsigned x) {
if (x <= 1) return 1;
int power = 2;
x--;
while (x >>= 1) power <<= 1;
return power;
}
其他回答
next = pow(2, ceil(log(x)/log(2)));
这是通过找到你想要2乘以x的数字来实现的(取这个数字的对数,然后除以想要的底数的对数,详见维基百科)。然后把它四舍五入,得到最接近的整数幂。
这是一个比其他地方链接的按位方法更通用的方法(即更慢!),但很好地了解数学,不是吗?
我认为这也是可行的:
int power = 1;
while(power < x)
power*=2;
答案就是力量。
c++ 14 clp2的constexpr版本
#include <iostream>
#include <type_traits>
// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }
/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }
/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }
/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }
template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }
int main()
{
test(-5); // 0
test(0); // 0
test(8); // 8
test(31); // 32
test(33); // 64
test(789); // 1024
test(char(260)); // 4
test(unsigned(-1) - 1); // 0
test<long long>(unsigned(-1) - 1); // 4294967296
return 0;
}
这是我用c语言的解决方案,希望能有所帮助!
int next_power_of_two(int n) {
int i = 0;
for (--n; n > 0; n >>= 1) {
i++;
}
return 1 << i;
}
c#中的可移植解决方案:
int GetNextPowerOfTwo(int input) {
return 1 << (int)Math.Ceiling(Math.Log2(input));
}
Math.Ceiling(Math.Log2(value))计算2的下一个幂的指数,1 <<通过移位计算实值。
更快的解决方案,如果你有。net Core 3或更高版本:
uint GetNextPowerOfTwoFaster(uint input) {
return (uint)1 << (sizeof(uint) * 8 - System.Numerics.BitOperations.LeadingZeroCount(input - 1));
}
这将使用system . numbers . bitoperations . leadingzerocount(),如果可用,则使用硬件指令:
https://github.com/dotnet/corert/blob/master/src/System.Private.CoreLib/shared/System/Numerics/BitOperations.cs
更新:
RoundUpToPowerOf2()即将在。net 6!内部实现与上面的. net Core 3解决方案基本相同。
这里是社区更新。