我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?


当前回答

将保罗·迪克森的答案应用到Excel中,效果非常好。

 =POWER(2,CEILING.MATH(LOG(A1)/LOG(2)))

其他回答

unsigned long upper_power_of_two(unsigned long v)
{
    v--;
    v |= v >> 1;
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    v++;
    return v;

}

对于IEEE浮点,你可以这样做。

int next_power_of_two(float a_F){
    int f = *(int*)&a_F;
    int b = f << 9 != 0; // If we're a power of two this is 0, otherwise this is 1

    f >>= 23; // remove factional part of floating point number
    f -= 127; // subtract 127 (the bias) from the exponent

    // adds one to the exponent if were not a power of two, 
    // then raises our new exponent to the power of two again.
    return (1 << (f + b)); 
}

如果你需要一个整数的解决方案,并且你能够使用内联汇编,BSR会在x86上给你一个整数的log2。它计算有多少位是正确的,这正好等于这个数字的log2。其他处理器(通常)有类似的指令,比如CLZ,根据你的编译器,可能有一个内在的可用指令来为你做这项工作。

在x86中,你可以使用sse4位操作指令来提高速度。

//assume input is in eax
mov    ecx,31      
popcnt edx,eax   //cycle 1
lzcnt  eax,eax   //cycle 2
sub    ecx,eax
mov    eax,1
cmp    edx,1     //cycle 3
jle @done        //cycle 4 - popcnt says its a power of 2, return input unchanged
shl    eax,cl    //cycle 5
@done: rep ret   //cycle 5

在c中,您可以使用匹配的intrinsic。

或者无跳转,通过避免跳转导致的错误预测来加快速度,但通过延长依赖链来减慢速度。计时,看看哪种代码最适合您。

//assume input is in eax
mov    ecx,31
popcnt edx,eax    //cycle 1
lzcnt  eax,eax
sub    ecx,eax
mov    eax,1      //cycle 2
cmp    edx,1
mov    edx,0     //cycle 3 
cmovle ecx,edx   //cycle 4 - ensure eax does not change
shl    eax,cl    
@done: rep ret   //cycle 5

c++ 14 clp2的constexpr版本

#include <iostream>
#include <type_traits>

// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
  constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
    { return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }

/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
  constexpr auto clp2m1(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }

/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
  constexpr auto clp2(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }

/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
  constexpr auto np2(Int n) noexcept
    { return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }

template <typename T>
  void test(T v) { std::cout << clp2(v) << std::endl; }

int main()
{
    test(-5);                          // 0
    test(0);                           // 0
    test(8);                           // 8
    test(31);                          // 32
    test(33);                          // 64
    test(789);                         // 1024
    test(char(260));                   // 4
    test(unsigned(-1) - 1);            // 0
    test<long long>(unsigned(-1) - 1); // 4294967296

    return 0;
}

还有一个,虽然我用的是循环,但这比数学操作数要快得多

功率两“地板”选项:

int power = 1;
while (x >>= 1) power <<= 1;

两个“ceil”选项的力量:

int power = 2;
x--;    // <<-- UPDATED
while (x >>= 1) power <<= 1;

更新

正如在评论中提到的,在cell中有错误,它的结果是错误的。

以下是全部功能:

unsigned power_floor(unsigned x) {
    int power = 1;
    while (x >>= 1) power <<= 1;
    return power;
}

unsigned power_ceil(unsigned x) {
    if (x <= 1) return 1;
    int power = 2;
    x--;
    while (x >>= 1) power <<= 1;
    return power;
}