最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
如果在面试中被问到这个问题,面试官可能想看你解决问题的过程,而不仅仅是你的算法知识。
The description is quite general so maybe you can ask him the range or meaning of these numbers to make the problem clear. Doing this may impress an interviewer. If, for example, these numbers stands for people's age then it's a much easier problem. With a reasonable assumption that nobody alive is older than 200, you can use an integer array of size 200 (maybe 201) to count the number of people with the same age in just one iteration. Here the index means the age. After this it's a piece of cake to find 100 largest numbers. By the way this algorithm is called counting sort.
无论如何,让问题更具体、更清楚对你在面试中是有好处的。
其他回答
Although in this question we should search for top 100 numbers, I will
generalize things and write x. Still, I will treat x as constant value.
n中最大的x元素:
我将调用返回值LIST。它是一个x元素的集合(在我看来应该是链表)
First x elements are taken from pool "as they come" and sorted in LIST (this is done in constant time since x is treated as constant - O( x log(x) ) time) For every element that comes next we check if it is bigger than smallest element in LIST and if is we pop out the smallest and insert current element to LIST. Since that is ordered list every element should find its place in logarithmic time (binary search) and since it is ordered list insertion is not a problem. Every step is also done in constant time ( O(log(x) ) time ).
那么,最坏的情况是什么?
xlog(x)+(n-x)(log(x)+1)=nlog(x)+n- x
最坏情况是O(n)时间。+1是检查数字是否大于LIST中最小的数字。平均情况的预期时间将取决于这n个元素的数学分布。
可能的改进
在最坏的情况下,这个算法可以稍微改进,但恕我直言(我无法证明这一点),这会降低平均行为。渐近行为是一样的。
该算法的改进在于,我们将不检查元素是否大于最小值。对于每个元素,我们将尝试插入它,如果它小于最小值,我们将忽略它。尽管如果我们只考虑我们将面临的最坏的情况,这听起来很荒谬
x log(x) + (n-x)log(x) = nlog(x)
操作。
对于这个用例,我没有看到任何进一步的改进。但是你必须问自己,如果我要对不同的x做多于log(n)次呢?显然,我们会以O(nlog (n))为单位对数组进行排序,并在需要时提取x元素。
从十亿个数字中找到前100个最好使用包含100个元素的最小堆。
首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。
现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。
如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。
作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。
一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。
你可以在O(n)个时间内完成。只需遍历列表,并跟踪在任何给定点上看到的最大的100个数字,以及该组中的最小值。当你发现一个新的数字大于你的10个数字中的最小值,然后替换它并更新你的新的100的最小值(可能每次你都要花100的常数时间来确定,但这并不影响整体分析)。
虽然其他的quickselect解决方案已经被否决,但事实是quickselect将比使用大小为100的队列更快地找到解决方案。在比较方面,Quickselect的预期运行时间为2n + o(n)。一个非常简单的实现是
array = input array of length n
r = Quickselect(array,n-100)
result = array of length 100
for(i = 1 to n)
if(array[i]>r)
add array[i] to result
这平均需要3n + o(n)次比较。此外,quickselect将数组中最大的100个项保留在最右边的100个位置,这可以提高效率。所以实际上,运行时间可以提高到2n+o(n)。
有一个问题是,这是预期的运行时间,而不是最坏的情况,但通过使用一个不错的主元选择策略(例如,随机选择21个元素,并选择这21个元素的中位数作为主元),那么比较的数量可以保证高概率为(2+c)n对于任意小的常数c。
事实上,通过使用优化的抽样策略(例如随机抽样平方根(n)个元素,并选择第99百分位数),对于任意小的c(假设K,要选择的元素数量为o(n)),运行时间可以降至(1+c)n + o(n)。
另一方面,使用大小为100的队列将需要O(log(100)n)个比较,log以2为底100的对数大约等于6.6。
如果我们从更抽象的意义上考虑这个问题,即从大小为N的数组中选择最大的K个元素,其中K=o(N),但K和N都趋于无穷大,那么快速选择版本的运行时间将是o(N),队列版本的运行时间将是o(N log K),因此在这种意义上,快速选择也渐近地更好。
在注释中,提到队列解决方案将在随机输入的预期时间N + K log N内运行。当然,随机输入假设永远不会成立,除非问题明确地说明了这一点。队列解决方案可以以随机顺序遍历数组,但这将产生对随机数生成器的N次调用的额外成本,以及排列整个输入数组或分配一个长度为N的包含随机索引的新数组。
如果问题不允许您移动原始数组中的元素,并且分配内存的成本很高,因此不能复制数组,那就是另一回事了。但严格地从运行时间来看,这是最好的解决方案。
I would find out who had the time to put a billion numbers into an array and fire him. Must work for government. At least if you had a linked list you could insert a number into the middle without moving half a billion to make room. Even better a Btree allows for a binary search. Each comparison eliminates half of your total. A hash algorithm would allow you to populate the data structure like a checkerboard but not so good for sparse data. As it is your best bet is to have a solution array of 100 integers and keep track of the lowest number in your solution array so you can replace it when you come across a higher number in the original array. You would have to look at every element in the original array assuming it is not sorted to begin with.