最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

复杂度为O(N)

首先创建一个100个int的数组,将这个数组的第一个元素初始化为N个值的第一个元素, 用另一个变量CurrentBig来跟踪当前元素的索引

遍历N个值

if N[i] > M[CurrentBig] {

M[CurrentBig]=N[i]; ( overwrite the current value with the newly found larger number)

CurrentBig++;      ( go to the next position in the M array)

CurrentBig %= 100; ( modulo arithmetic saves you from using lists/hashes etc.)

M[CurrentBig]=N[i];    ( pick up the current value again to use it for the next Iteration of the N array)

} 

完成后,从CurrentBig中打印M数组100次模100:-) 对于学生:确保代码的最后一行在代码退出之前没有胜过有效数据

其他回答

我对此的直接反应是使用堆,但有一种方法可以使用QuickSelect,而不需要在任何时候保留所有的输入值。

创建一个大小为200的数组,并用前200个输入值填充它。运行QuickSelect并丢弃低100个位置,留下100个空闲位置。读入接下来的100个输入值并再次运行QuickSelect。继续执行,直到以100个批次为单位运行整个输入。

最后是前100个值。对于N个值,您运行QuickSelect大约N/100次。每个快速选择的代价大约是某个常数的200倍,所以总代价是某个常数的2N倍。在我看来,输入的大小是线性的,不管我在这个解释中硬连接的参数大小是100。

此代码用于在未排序数组中查找N个最大的数字。

#include <iostream>


using namespace std;

#define Array_Size 5 // No Of Largest Numbers To Find
#define BILLION 10000000000

void findLargest(int max[], int array[]);
int checkDup(int temp, int max[]);

int main() {


        int array[BILLION] // contains data

        int i=0, temp;

        int max[Array_Size];


        findLargest(max,array); 


        cout<< "The "<< Array_Size<< " largest numbers in the array are: \n";

        for(i=0; i< Array_Size; i++)
            cout<< max[i] << endl;

        return 0;
    }




void findLargest(int max[], int array[])
{
    int i,temp,res;

    for(int k=0; k< Array_Size; k++)
    {
           i=0;

        while(i < BILLION)
        {
            for(int j=0; j< Array_Size ; j++)
            {
                temp = array[i];

                 res= checkDup(temp,max);

                if(res == 0 && max[j] < temp)
                    max[j] = temp;
            }

            i++;
        }
    }
}


int checkDup(int temp, int max[])
{
    for(int i=0; i<N_O_L_N_T_F; i++)
    {
        if(max[i] == temp)
            return -1;
    }

    return 0;
}

这可能不是一个有效的方法,但可以完成工作。

希望这能有所帮助

 Although in this question we should search for top 100 numbers, I will 
 generalize things and write x. Still, I will treat x as constant value.

n中最大的x元素:

我将调用返回值LIST。它是一个x元素的集合(在我看来应该是链表)

First x elements are taken from pool "as they come" and sorted in LIST (this is done in constant time since x is treated as constant - O( x log(x) ) time) For every element that comes next we check if it is bigger than smallest element in LIST and if is we pop out the smallest and insert current element to LIST. Since that is ordered list every element should find its place in logarithmic time (binary search) and since it is ordered list insertion is not a problem. Every step is also done in constant time ( O(log(x) ) time ).

那么,最坏的情况是什么?

xlog(x)+(n-x)(log(x)+1)=nlog(x)+n- x

最坏情况是O(n)时间。+1是检查数字是否大于LIST中最小的数字。平均情况的预期时间将取决于这n个元素的数学分布。

可能的改进

在最坏的情况下,这个算法可以稍微改进,但恕我直言(我无法证明这一点),这会降低平均行为。渐近行为是一样的。

该算法的改进在于,我们将不检查元素是否大于最小值。对于每个元素,我们将尝试插入它,如果它小于最小值,我们将忽略它。尽管如果我们只考虑我们将面临的最坏的情况,这听起来很荒谬

x log(x) + (n-x)log(x) = nlog(x)

操作。

对于这个用例,我没有看到任何进一步的改进。但是你必须问自己,如果我要对不同的x做多于log(n)次呢?显然,我们会以O(nlog (n))为单位对数组进行排序,并在需要时提取x元素。

我做了我自己的代码,不确定它是否是“面试官”所寻找的

private static final int MAX=100;
 PriorityQueue<Integer> queue = new PriorityQueue<>(MAX);
        queue.add(array[0]);
        for (int i=1;i<array.length;i++)
        {

            if(queue.peek()<array[i])
            {
                if(queue.size() >=MAX)
                {
                    queue.poll();
                }
                queue.add(array[i]);

            }

        }

您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。

array={...the billion numbers...} 
result[100];

pivot=QuickSelect(array,billion-101);//O(N)

for(i=0;i<billion;i++)//O(N)
   if(array[i]>=pivot)
      result.add(array[i]);

该算法时间为:2 X O(N) = O(N)(平均情况性能)

Thomas Jungblut建议的第二个选择是:

使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。

该算法时间为:O(N) + 100 X O(Log(N)) = O(N)