我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

如果你知道它们是0和1

np.sum(y)

给出1的个数。Np.sum (1-y)给出0。

一般来说,如果你想计算0而不是0(但可能是2或3):

np.count_nonzero(y)

给出非零的个数。

但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:

import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})

这就像字典一样

collections.Counter(y)[0]
> 8

其他回答

dict(zip(*numpy.unique(y, return_counts=True)))

只是复制了Seppo Enarvi的评论,这应该是一个正确的答案

使用numpy.unique:

import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)

>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}

使用collections.Counter的非numpy方法;

import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)

>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})

如果你正在处理非常大的数组,使用生成器可能是一个选择。这里的好处是,这种方法适用于数组和列表,你不需要任何额外的包。此外,您不会使用那么多内存。

my_array = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
sum(1 for val in my_array if val==0)
Out: 8
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

如果你知道它们是0和1

np.sum(y)

给出1的个数。Np.sum (1-y)给出0。

一般来说,如果你想计算0而不是0(但可能是2或3):

np.count_nonzero(y)

给出非零的个数。

但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:

import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})

这就像字典一样

collections.Counter(y)[0]
> 8

对于您的情况,还可以查看numpy.bincount

In [56]: a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

In [57]: np.bincount(a)
Out[57]: array([8, 4])  #count of zeros is at index 0, i.e. 8
                        #count of ones is at index 1, i.e. 4