我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
使用numpy怎么样?count_non0,类似的
>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])
>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3
其他回答
使用numpy.unique:
import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)
>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}
使用collections.Counter的非numpy方法;
import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)
>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})
要计算出现的次数,可以使用np。独特的(数组,return_counts = True):
In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1]) #unique elements in input array are: 0, 1
In [82]: cnts
Out[82]: array([8, 4]) # 0 occurs 8 times, 1 occurs 4 times
您可以使用字典理解来创建简洁的一行代码。更多关于字典理解的内容可以在这里找到
>>> counts = {int(value): list(y).count(value) for value in set(y)}
>>> print(counts)
{0: 8, 1: 4}
这将创建一个字典,将ndarray中的值作为键,并将值的计数分别作为键的值。
当您想要计算该格式数组中某个值的出现次数时,这种方法就可以工作。
如果你确切地知道你要找的数字,你可以使用下面的方法;
lst = np.array([1,1,2,3,3,6,6,6,3,2,1])
(lst == 2).sum()
返回2在数组中出现的次数。
using numpy.count
$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
$ np.count(a, 1)