我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
您可以使用字典理解来创建简洁的一行代码。更多关于字典理解的内容可以在这里找到
>>> counts = {int(value): list(y).count(value) for value in set(y)}
>>> print(counts)
{0: 8, 1: 4}
这将创建一个字典,将ndarray中的值作为键,并将值的计数分别作为键的值。
当您想要计算该格式数组中某个值的出现次数时,这种方法就可以工作。
其他回答
使用numpy怎么样?count_non0,类似的
>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])
>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3
老实说,我发现最容易转换为熊猫系列或DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'data':np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])})
print df['data'].value_counts()
或者是Robert Muil的一句俏皮话:
pd.Series([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]).value_counts()
如果你正在处理非常大的数组,使用生成器可能是一个选择。这里的好处是,这种方法适用于数组和列表,你不需要任何额外的包。此外,您不会使用那么多内存。
my_array = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
sum(1 for val in my_array if val==0)
Out: 8
如果你对最快的执行感兴趣,你提前知道要查找哪个(s)值,并且你的数组是1D,或者你对扁平数组上的结果感兴趣(在这种情况下,函数的输入应该是np.ravel(arr)而不仅仅是arr),那么Numba是你的朋友:
import numba as nb
@nb.jit
def count_nb(arr, value):
result = 0
for x in arr:
if x == value:
result += 1
return result
或者,对于非常大的数组,并行化可能是有益的:
@nb.jit(parallel=True)
def count_nbp(arr, value):
result = 0
for i in nb.prange(arr.size):
if arr[i] == value:
result += 1
return result
可以对np.count_nonzero()(它也有创建临时数组的问题——这是Numba解决方案中避免的问题)和基于np.unique()的解决方案(与其他解决方案相反,它实际上计算所有唯一值值)进行基准测试。
import numpy as np
def count_np(arr, value):
return np.count_nonzero(arr == value)
import numpy as np
def count_np_uniq(arr, value):
uniques, counts = np.unique(a, return_counts=True)
counter = dict(zip(uniques, counts))
return counter[value] if value in counter else 0
由于Numba支持“类型化”字典,也可以使用一个函数来计数所有元素的所有出现次数。 这更直接地与np.unique()竞争,因为它能够在一次运行中计算所有值。这里提出了一个最终只返回单个值的元素数量的版本(为了比较,类似于count_np_uniq()中所做的事情):
@nb.jit
def count_nb_dict(arr, value):
counter = {arr[0]: 1}
for x in arr:
if x not in counter:
counter[x] = 1
else:
counter[x] += 1
return counter[value] if value in counter else 0
输入是通过以下方式生成的:
def gen_input(n, a=0, b=100):
return np.random.randint(a, b, n)
时间报告在下面的图中(第二行图是对更快的方法的放大):
表明简单的基于numba的解决方案对于较小的输入是最快的,而并行版本对于较大的输入是最快的。 NumPy版本在所有规模上都相当快。
当需要计算数组中的所有值时,对于足够大的数组,np.unique()比手动使用Numba实现的解决方案性能更好。
编辑:在最近的版本中,NumPy解决方案似乎变得更快了。在以前的迭代中,简单的Numba解决方案对于任何输入大小都优于NumPy的方法。
完整的代码可以在这里找到。
利用a系列提供的方法:
>>> import pandas as pd
>>> y = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
>>> pd.Series(y).value_counts()
0 8
1 4
dtype: int64