我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
我会使用np.where:
how_many_0 = len(np.where(a==0.)[0])
how_many_1 = len(np.where(a==1.)[0])
其他回答
老实说,我发现最容易转换为熊猫系列或DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'data':np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])})
print df['data'].value_counts()
或者是Robert Muil的一句俏皮话:
pd.Series([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]).value_counts()
如果你不想使用numpy或collections模块,你可以使用字典:
d = dict()
a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
for item in a:
try:
d[item]+=1
except KeyError:
d[item]=1
结果:
>>>d
{0: 8, 1: 4}
当然,你也可以使用if/else语句。 我认为Counter函数做了几乎相同的事情,但这个更透明。
因为ndarray只包含0和1, 您可以使用sum()来获得1的出现次数 和len()-sum()来得到0的出现情况。
num_of_ones = sum(array)
num_of_zeros = len(array)-sum(array)
如果你正在处理非常大的数组,使用生成器可能是一个选择。这里的好处是,这种方法适用于数组和列表,你不需要任何额外的包。此外,您不会使用那么多内存。
my_array = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
sum(1 for val in my_array if val==0)
Out: 8
筛选并使用len
使用len是另一种选择。
A = np.array([1,0,1,0,1,0,1])
假设我们想要0的出现次数。
A[A==0] # Return the array where item is 0, array([0, 0, 0])
现在,用len把它包起来。
len(A[A==0]) # 3
len(A[A==1]) # 4
len(A[A==7]) # 0, because there isn't such item.