我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

要计算出现的次数,可以使用np。独特的(数组,return_counts = True):

In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
 
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1])   #unique elements in input array are: 0, 1

In [82]: cnts
Out[82]: array([8, 4])   # 0 occurs 8 times, 1 occurs 4 times

其他回答

对于一般条目:

x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}

将输出一个计数:

{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}

和指标:

{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}

利用a系列提供的方法:

>>> import pandas as pd
>>> y = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
>>> pd.Series(y).value_counts()
0    8
1    4
dtype: int64
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

如果你知道它们是0和1

np.sum(y)

给出1的个数。Np.sum (1-y)给出0。

一般来说,如果你想计算0而不是0(但可能是2或3):

np.count_nonzero(y)

给出非零的个数。

但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:

import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})

这就像字典一样

collections.Counter(y)[0]
> 8

使用numpy.unique:

import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)

>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}

使用collections.Counter的非numpy方法;

import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)

>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})

y (val)伯爵tolist()。

val为0或1

因为python列表有一个原生函数count,所以在使用该函数之前转换为list是一个简单的解决方案。