我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
要计算出现的次数,可以使用np。独特的(数组,return_counts = True):
In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1]) #unique elements in input array are: 0, 1
In [82]: cnts
Out[82]: array([8, 4]) # 0 occurs 8 times, 1 occurs 4 times
其他回答
筛选并使用len
使用len是另一种选择。
A = np.array([1,0,1,0,1,0,1])
假设我们想要0的出现次数。
A[A==0] # Return the array where item is 0, array([0, 0, 0])
现在,用len把它包起来。
len(A[A==0]) # 3
len(A[A==1]) # 4
len(A[A==7]) # 0, because there isn't such item.
这个函数返回变量在数组中出现的次数:
def count(array,variable):
number = 0
for i in range(array.shape[0]):
for j in range(array.shape[1]):
if array[i,j] == variable:
number += 1
return number
我会使用np.where:
how_many_0 = len(np.where(a==0.)[0])
how_many_1 = len(np.where(a==1.)[0])
Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。
numpy.histogram(y, bins=y)
输出是2个数组。一个是数值本身,另一个是相应的频率。
它还涉及一个步骤,但更灵活的解决方案也适用于2d数组和更复杂的过滤器,即创建一个布尔掩码,然后在掩码上使用.sum()。
>>>>y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
>>>>mask = y == 0
>>>>mask.sum()
8