我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
这里我有一些东西,通过它你可以计算特定数字的出现次数: 根据你的代码
count_of_zero=list(y[y==0]).count(0)
print(count_of_zero)
// according to the match there will be boolean values and according
// to True value the number 0 will be return.
其他回答
我会使用np.where:
how_many_0 = len(np.where(a==0.)[0])
how_many_1 = len(np.where(a==1.)[0])
Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。
numpy.histogram(y, bins=y)
输出是2个数组。一个是数值本身,另一个是相应的频率。
试试这个:
a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
list(a).count(1)
你有一个只有1和0的特殊数组。一个技巧就是使用
np.mean(x)
也就是数组中1的百分比。另外,使用
np.sum(x)
np.sum(1-x)
会给出数组中1和0的绝对值。
using numpy.count
$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
$ np.count(a, 1)