我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

这可以用下面的方法轻松完成

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.tolist().count(1)

其他回答

y (val)伯爵tolist()。

val为0或1

因为python列表有一个原生函数count,所以在使用该函数之前转换为list是一个简单的解决方案。

使用numpy怎么样?count_non0,类似的

>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])

>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3

对于一般条目:

x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}

将输出一个计数:

{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}

和指标:

{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}
using numpy.count

$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]

$ np.count(a, 1)

这里我有一些东西,通过它你可以计算特定数字的出现次数: 根据你的代码

count_of_zero=list(y[y==0]).count(0) 

print(count_of_zero)

// according to the match there will be boolean values and according
// to True value the number 0 will be return.