我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
这可以用下面的方法轻松完成
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.tolist().count(1)
其他回答
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
如果你知道它们是0和1
np.sum(y)
给出1的个数。Np.sum (1-y)给出0。
一般来说,如果你想计算0而不是0(但可能是2或3):
np.count_nonzero(y)
给出非零的个数。
但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:
import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})
这就像字典一样
collections.Counter(y)[0]
> 8
对于您的情况,还可以查看numpy.bincount
In [56]: a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
In [57]: np.bincount(a)
Out[57]: array([8, 4]) #count of zeros is at index 0, i.e. 8
#count of ones is at index 1, i.e. 4
就我个人而言,我认为: (y == 0).sum() and (y == 1).sum()
E.g.
import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
num_zeros = (y == 0).sum()
num_ones = (y == 1).sum()
Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。
numpy.histogram(y, bins=y)
输出是2个数组。一个是数值本身,另一个是相应的频率。
最简单的方法是,如果没有必要的话做评论
import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
count_0, count_1 = 0, 0
for i in y_train:
if i == 0:
count_0 += 1
if i == 1:
count_1 += 1
count_0, count_1