我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

这可以用下面的方法轻松完成

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.tolist().count(1)

其他回答

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

如果你知道它们是0和1

np.sum(y)

给出1的个数。Np.sum (1-y)给出0。

一般来说,如果你想计算0而不是0(但可能是2或3):

np.count_nonzero(y)

给出非零的个数。

但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:

import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})

这就像字典一样

collections.Counter(y)[0]
> 8

对于您的情况,还可以查看numpy.bincount

In [56]: a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

In [57]: np.bincount(a)
Out[57]: array([8, 4])  #count of zeros is at index 0, i.e. 8
                        #count of ones is at index 1, i.e. 4

就我个人而言,我认为: (y == 0).sum() and (y == 1).sum()

E.g.

import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
num_zeros = (y == 0).sum()
num_ones = (y == 1).sum()

Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。

numpy.histogram(y, bins=y)

输出是2个数组。一个是数值本身,另一个是相应的频率。

最简单的方法是,如果没有必要的话做评论

import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
count_0, count_1 = 0, 0
for i in y_train:
    if i == 0:
        count_0 += 1
    if i == 1:
        count_1 += 1
count_0, count_1