我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
如果你正在处理非常大的数组,使用生成器可能是一个选择。这里的好处是,这种方法适用于数组和列表,你不需要任何额外的包。此外,您不会使用那么多内存。
my_array = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
sum(1 for val in my_array if val==0)
Out: 8
其他回答
您可以使用字典理解来创建简洁的一行代码。更多关于字典理解的内容可以在这里找到
>>> counts = {int(value): list(y).count(value) for value in set(y)}
>>> print(counts)
{0: 8, 1: 4}
这将创建一个字典,将ndarray中的值作为键,并将值的计数分别作为键的值。
当您想要计算该格式数组中某个值的出现次数时,这种方法就可以工作。
使用numpy怎么样?count_non0,类似的
>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])
>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3
一个普遍而简单的答案是:
numpy.sum(MyArray==x) # sum of a binary list of the occurence of x (=0 or 1) in MyArray
这将导致这完整的代码作为例子
import numpy
MyArray=numpy.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]) # array we want to search in
x=0 # the value I want to count (can be iterator, in a list, etc.)
numpy.sum(MyArray==0) # sum of a binary list of the occurence of x in MyArray
现在,如果MyArray是多维的,你想要计算值在直线(= pattern以后)上分布的次数。
MyArray=numpy.array([[6, 1],[4, 5],[0, 7],[5, 1],[2, 5],[1, 2],[3, 2],[0, 2],[2, 5],[5, 1],[3, 0]])
x=numpy.array([5,1]) # the value I want to count (can be iterator, in a list, etc.)
temp = numpy.ascontiguousarray(MyArray).view(numpy.dtype((numpy.void, MyArray.dtype.itemsize * MyArray.shape[1]))) # convert the 2d-array into an array of analyzable patterns
xt=numpy.ascontiguousarray(x).view(numpy.dtype((numpy.void, x.dtype.itemsize * x.shape[0]))) # convert what you search into one analyzable pattern
numpy.sum(temp==xt) # count of the searched pattern in the list of patterns
如果你正在处理非常大的数组,使用生成器可能是一个选择。这里的好处是,这种方法适用于数组和列表,你不需要任何额外的包。此外,您不会使用那么多内存。
my_array = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
sum(1 for val in my_array if val==0)
Out: 8
筛选并使用len
使用len是另一种选择。
A = np.array([1,0,1,0,1,0,1])
假设我们想要0的出现次数。
A[A==0] # Return the array where item is 0, array([0, 0, 0])
现在,用len把它包起来。
len(A[A==0]) # 3
len(A[A==1]) # 4
len(A[A==7]) # 0, because there isn't such item.