我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
最简单的方法是,如果没有必要的话做评论
import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
count_0, count_1 = 0, 0
for i in y_train:
if i == 0:
count_0 += 1
if i == 1:
count_1 += 1
count_0, count_1
其他回答
另一个简单的解决方案可能是使用numpy.count_nonzero():
import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y_nonzero_num = np.count_nonzero(y==1)
y_zero_num = np.count_nonzero(y==0)
y_nonzero_num
4
y_zero_num
8
不要让这个名字误导了你,如果你像例子中那样使用布尔值,它会达到目的的。
你有一个只有1和0的特殊数组。一个技巧就是使用
np.mean(x)
也就是数组中1的百分比。另外,使用
np.sum(x)
np.sum(1-x)
会给出数组中1和0的绝对值。
利用a系列提供的方法:
>>> import pandas as pd
>>> y = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
>>> pd.Series(y).value_counts()
0 8
1 4
dtype: int64
它还涉及一个步骤,但更灵活的解决方案也适用于2d数组和更复杂的过滤器,即创建一个布尔掩码,然后在掩码上使用.sum()。
>>>>y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
>>>>mask = y == 0
>>>>mask.sum()
8
这个函数返回变量在数组中出现的次数:
def count(array,variable):
number = 0
for i in range(array.shape[0]):
for j in range(array.shape[1]):
if array[i,j] == variable:
number += 1
return number