我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

这个函数返回变量在数组中出现的次数:

def count(array,variable):
    number = 0
    for i in range(array.shape[0]):
        for j in range(array.shape[1]):
            if array[i,j] == variable:
                number += 1
    return number

其他回答

使用numpy.unique:

import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)

>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}

使用collections.Counter的非numpy方法;

import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)

>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})

要计算出现的次数,可以使用np。独特的(数组,return_counts = True):

In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
 
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1])   #unique elements in input array are: 0, 1

In [82]: cnts
Out[82]: array([8, 4])   # 0 occurs 8 times, 1 occurs 4 times

对于一般条目:

x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}

将输出一个计数:

{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}

和指标:

{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}

你有一个只有1和0的特殊数组。一个技巧就是使用

np.mean(x)

也就是数组中1的百分比。另外,使用

np.sum(x)
np.sum(1-x)

会给出数组中1和0的绝对值。

Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。

numpy.histogram(y, bins=y)

输出是2个数组。一个是数值本身,另一个是相应的频率。