我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

因为ndarray只包含0和1, 您可以使用sum()来获得1的出现次数 和len()-sum()来得到0的出现情况。

num_of_ones = sum(array)
num_of_zeros = len(array)-sum(array)

其他回答

如果你不想使用numpy或collections模块,你可以使用字典:

d = dict()
a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
for item in a:
    try:
        d[item]+=1
    except KeyError:
        d[item]=1

结果:

>>>d
{0: 8, 1: 4}

当然,你也可以使用if/else语句。 我认为Counter函数做了几乎相同的事情,但这个更透明。

另一个简单的解决方案可能是使用numpy.count_nonzero():

import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y_nonzero_num = np.count_nonzero(y==1)
y_zero_num = np.count_nonzero(y==0)
y_nonzero_num
4
y_zero_num
8

不要让这个名字误导了你,如果你像例子中那样使用布尔值,它会达到目的的。

使用numpy.unique:

import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)

>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}

使用collections.Counter的非numpy方法;

import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)

>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})

它还涉及一个步骤,但更灵活的解决方案也适用于2d数组和更复杂的过滤器,即创建一个布尔掩码,然后在掩码上使用.sum()。

>>>>y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
>>>>mask = y == 0
>>>>mask.sum()
8

就我个人而言,我认为: (y == 0).sum() and (y == 1).sum()

E.g.

import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
num_zeros = (y == 0).sum()
num_ones = (y == 1).sum()