我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
你有一个只有1和0的特殊数组。一个技巧就是使用
np.mean(x)
也就是数组中1的百分比。另外,使用
np.sum(x)
np.sum(1-x)
会给出数组中1和0的绝对值。
其他回答
使用numpy.unique:
import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)
>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}
使用collections.Counter的非numpy方法;
import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)
>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})
对于一般条目:
x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}
将输出一个计数:
{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}
和指标:
{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}
老实说,我发现最容易转换为熊猫系列或DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'data':np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])})
print df['data'].value_counts()
或者是Robert Muil的一句俏皮话:
pd.Series([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]).value_counts()
using numpy.count
$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
$ np.count(a, 1)
最简单的方法是,如果没有必要的话做评论
import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
count_0, count_1 = 0, 0
for i in y_train:
if i == 0:
count_0 += 1
if i == 1:
count_1 += 1
count_0, count_1