我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

如果你确切地知道你要找的数字,你可以使用下面的方法;

lst = np.array([1,1,2,3,3,6,6,6,3,2,1])
(lst == 2).sum()

返回2在数组中出现的次数。

其他回答

筛选并使用len

使用len是另一种选择。

A = np.array([1,0,1,0,1,0,1])

假设我们想要0的出现次数。

A[A==0]  # Return the array where item is 0, array([0, 0, 0])

现在,用len把它包起来。

len(A[A==0])  # 3
len(A[A==1])  # 4
len(A[A==7])  # 0, because there isn't such item.

对于您的情况,还可以查看numpy.bincount

In [56]: a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

In [57]: np.bincount(a)
Out[57]: array([8, 4])  #count of zeros is at index 0, i.e. 8
                        #count of ones is at index 1, i.e. 4

一个普遍而简单的答案是:

numpy.sum(MyArray==x)   # sum of a binary list of the occurence of x (=0 or 1) in MyArray

这将导致这完整的代码作为例子

import numpy
MyArray=numpy.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])  # array we want to search in
x=0   # the value I want to count (can be iterator, in a list, etc.)
numpy.sum(MyArray==0)   # sum of a binary list of the occurence of x in MyArray

现在,如果MyArray是多维的,你想要计算值在直线(= pattern以后)上分布的次数。

MyArray=numpy.array([[6, 1],[4, 5],[0, 7],[5, 1],[2, 5],[1, 2],[3, 2],[0, 2],[2, 5],[5, 1],[3, 0]])
x=numpy.array([5,1])   # the value I want to count (can be iterator, in a list, etc.)
temp = numpy.ascontiguousarray(MyArray).view(numpy.dtype((numpy.void, MyArray.dtype.itemsize * MyArray.shape[1])))  # convert the 2d-array into an array of analyzable patterns
xt=numpy.ascontiguousarray(x).view(numpy.dtype((numpy.void, x.dtype.itemsize * x.shape[0])))  # convert what you search into one analyzable pattern
numpy.sum(temp==xt)  # count of the searched pattern in the list of patterns

最简单的方法是,如果没有必要的话做评论

import numpy as np
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
count_0, count_1 = 0, 0
for i in y_train:
    if i == 0:
        count_0 += 1
    if i == 1:
        count_1 += 1
count_0, count_1

Numpy为此提供了一个模块。只是一个小hack。将输入数组作为箱子。

numpy.histogram(y, bins=y)

输出是2个数组。一个是数值本身,另一个是相应的频率。