我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
dict(zip(*numpy.unique(y, return_counts=True)))
只是复制了Seppo Enarvi的评论,这应该是一个正确的答案
其他回答
利用a系列提供的方法:
>>> import pandas as pd
>>> y = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
>>> pd.Series(y).value_counts()
0 8
1 4
dtype: int64
使用numpy.unique:
import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)
>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}
使用collections.Counter的非numpy方法;
import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)
>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})
要计算出现的次数,可以使用np。独特的(数组,return_counts = True):
In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1]) #unique elements in input array are: 0, 1
In [82]: cnts
Out[82]: array([8, 4]) # 0 occurs 8 times, 1 occurs 4 times
这里我有一些东西,通过它你可以计算特定数字的出现次数: 根据你的代码
count_of_zero=list(y[y==0]).count(0)
print(count_of_zero)
// according to the match there will be boolean values and according
// to True value the number 0 will be return.
使用numpy怎么样?count_non0,类似的
>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])
>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3