了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

只有在使用编译器不支持的特殊用途指令集时。

为了最大限度地利用具有多个管道和预测分支的现代CPU的计算能力,您需要以这样一种方式来构造汇编程序:a)人类几乎不可能编写b)甚至更不可能维护。

此外,更好的算法、数据结构和内存管理将为您提供至少一个数量级的性能,而不是在汇编中进行的微观优化。

其他回答

简短的回答吗?有时。

从技术上讲,每一个抽象都有成本,而编程语言是CPU如何工作的抽象。然而C非常接近。几年前,我记得当我登录UNIX帐户并收到以下财富信息时(当时这种东西很流行),我笑出声来:

C程序设计语言——A 语言结合了 汇编语言的灵活性 汇编语言的强大。

这很有趣,因为这是真的:C就像可移植的汇编语言。

值得注意的是,汇编语言无论如何编写都可以运行。然而,在C语言和它生成的汇编语言之间有一个编译器,这是非常重要的,因为你的C代码有多快与你的编译器有多好有很大关系。

当gcc出现时,它如此受欢迎的原因之一是它通常比许多商业UNIX版本附带的C编译器要好得多。它不仅是ANSI C(没有任何K&R C的垃圾),更健壮,通常能产生更好(更快)的代码。不是总是,而是经常。

我告诉你这一切是因为没有关于C和汇编器速度的统一规则,因为C没有客观的标准。

同样地,汇编程序也会根据你正在运行的处理器、你的系统规格、你正在使用的指令集等而有很大的不同。历史上有两个CPU体系结构家族:CISC和RISC。CISC中最大的玩家过去是,现在仍然是Intel x86架构(和指令集)。RISC主宰了UNIX世界(MIPS6000、Alpha、Sparc等等)。CISC赢得了民心之战。

不管怎样,当我还是一个年轻的开发人员时,流行的观点是,手写的x86通常比C快得多,因为架构的工作方式,它的复杂性受益于人类的操作。另一方面,RISC似乎是为编译器设计的,所以没有人(我知道)写Sparc汇编器。我相信这样的人确实存在,但毫无疑问,他们现在都疯了,被送进了精神病院。

指令集是一个重要的点,即使在同一家族的处理器。某些英特尔处理器具有SSE到SSE4等扩展。AMD有他们自己的SIMD指令。像C这样的编程语言的好处是,人们可以编写他们的库,以便对您运行的任何处理器进行优化。这在汇编程序中是一项艰苦的工作。

你仍然可以在汇编程序中做一些编译器无法做的优化,一个编写良好的汇编程序算法将会和它的C等效程序一样快或更快。更大的问题是:这样做值得吗?

Ultimately though assembler was a product of its time and was more popular at a time when CPU cycles were expensive. Nowadays a CPU that costs $5-10 to manufacture (Intel Atom) can do pretty much anything anyone could want. The only real reason to write assembler these days is for low level things like some parts of an operating system (even so the vast majority of the Linux kernel is written in C), device drivers, possibly embedded devices (although C tends to dominate there too) and so on. Or just for kicks (which is somewhat masochistic).

长波克,只有一个限制时间。当你没有足够的资源来优化每一个代码的变化,并花时间分配寄存器,优化一些溢出和诸如此类的事情时,编译器每次都会赢。对代码进行修改、重新编译和度量。如有必要重复。

此外,你可以在高水平方面做很多事情。此外,检查生成的程序集可能会给人一种代码是垃圾的印象,但实际上它的运行速度比您想象的要快。例子:

Int y = data[i]; //在这里做一些事情。 call_function (y,…);

编译器将读取数据,将其推入堆栈(溢出),然后从堆栈读取并作为参数传递。听起来屎?它实际上可能是非常有效的延迟补偿,并导致更快的运行时。

//优化版本 call_function(数据[我],…);//毕竟不是那么优化。

优化版本的想法是,我们降低了寄存器压力,避免溢出。但事实上,“垃圾”版本更快!

看看汇编代码,只看指令,然后得出结论:指令越多,速度越慢,这将是一个错误的判断。

这里需要注意的是:许多组装专家认为他们知道很多,但知道的很少。规则也会随着架构的变化而变化。例如,x86代码并不存在总是最快的银弹。如今,最好还是按照经验法则行事:

记忆很慢 缓存速度快 尽量更好地使用缓存 你多久会错过一次?你有延迟补偿策略吗? 对于一个cache miss,你可以执行10-100个ALU/FPU/SSE指令 应用程序架构很重要。 . .但是当问题不在架构上时,它就没有帮助了

此外,过于相信编译器会神奇地将考虑不周到的C/ c++代码转换为“理论上最优”的代码是一厢情愿的想法。如果你关心这个低级别的“性能”,你必须知道你使用的编译器和工具链。

C/ c++中的编译器通常不太擅长重新排序子表达式,因为对于初学者来说,函数有副作用。函数式语言没有受到这个警告的影响,但它不太适合当前的生态系统。有一些编译器选项可以允许宽松的精确规则,允许编译器/链接器/代码生成器改变操作的顺序。

这个话题有点死路一条;对于大多数人来说,这是无关紧要的,而剩下的人,他们已经知道自己在做什么了。

这一切都归结为:“理解你在做什么”,这与知道你在做什么有点不同。

以下是我个人经历中的几个例子:

Access to instructions that are not accessible from C. For instance, many architectures (like x86-64, IA-64, DEC Alpha, and 64-bit MIPS or PowerPC) support a 64 bit by 64 bit multiplication producing a 128 bit result. GCC recently added an extension providing access to such instructions, but before that assembly was required. And access to this instruction can make a huge difference on 64-bit CPUs when implementing something like RSA - sometimes as much as a factor of 4 improvement in performance. Access to CPU-specific flags. The one that has bitten me a lot is the carry flag; when doing a multiple-precision addition, if you don't have access to the CPU carry bit one must instead compare the result to see if it overflowed, which takes 3-5 more instructions per limb; and worse, which are quite serial in terms of data accesses, which kills performance on modern superscalar processors. When processing thousands of such integers in a row, being able to use addc is a huge win (there are superscalar issues with contention on the carry bit as well, but modern CPUs deal pretty well with it). SIMD. Even autovectorizing compilers can only do relatively simple cases, so if you want good SIMD performance it's unfortunately often necessary to write the code directly. Of course you can use intrinsics instead of assembly but once you're at the intrinsics level you're basically writing assembly anyway, just using the compiler as a register allocator and (nominally) instruction scheduler. (I tend to use intrinsics for SIMD simply because the compiler can generate the function prologues and whatnot for me so I can use the same code on Linux, OS X, and Windows without having to deal with ABI issues like function calling conventions, but other than that the SSE intrinsics really aren't very nice - the Altivec ones seem better though I don't have much experience with them). As examples of things a (current day) vectorizing compiler can't figure out, read about bitslicing AES or SIMD error correction - one could imagine a compiler that could analyze algorithms and generate such code, but it feels to me like such a smart compiler is at least 30 years away from existing (at best).

On the other hand, multicore machines and distributed systems have shifted many of the biggest performance wins in the other direction - get an extra 20% speedup writing your inner loops in assembly, or 300% by running them across multiple cores, or 10000% by running them across a cluster of machines. And of course high level optimizations (things like futures, memoization, etc) are often much easier to do in a higher level language like ML or Scala than C or asm, and often can provide a much bigger performance win. So, as always, there are tradeoffs to be made.

我不能给出具体的例子,因为那是很多年前的事情了,但是在很多情况下,手工编写的汇编程序可以胜过任何编译器。原因:

您可以偏离调用约定,在寄存器中传递参数。 您可以仔细考虑如何使用寄存器,避免将变量存储在内存中。 对于跳转表之类的东西,可以避免检查索引的边界。

基本上,编译器在优化方面做得很好,这几乎总是“足够好”,但在某些情况下(如图形渲染),你要为每一个周期付出高昂的代价,你可以走捷径,因为你知道代码,而编译器不能,因为它必须在安全的方面。

事实上,我听说过一些图形渲染代码,其中一个例程,如直线绘制或多边形填充例程,实际上在堆栈上生成了一小块机器代码并在那里执行,以避免关于线条样式、宽度、模式等的连续决策。

也就是说,我想让编译器为我生成好的汇编代码,但又不太聪明,它们通常都是这样做的。事实上,我讨厌Fortran的一个原因是它为了“优化”而打乱代码,通常没有什么重要的目的。

通常,当应用程序出现性能问题时,都是由于浪费的设计造成的。这些天,我永远不会推荐汇编程序的性能,除非整个应用程序已经在它的生命周期内进行了调优,仍然不够快,并且把所有的时间都花在了紧凑的内部循环中。

补充:我见过很多用汇编语言编写的应用程序,与C、Pascal、Fortran等语言相比,汇编语言的主要速度优势是因为程序员在用汇编语言编码时要谨慎得多。他或她每天要写大约100行代码,不管哪种语言,在编译器语言中,这将等于3或400条指令。

一个更著名的组装片段来自Michael Abrash的纹理映射循环(在这里详细解释):

add edx,[DeltaVFrac] ; add in dVFrac
sbb ebp,ebp ; store carry
mov [edi],al ; write pixel n
mov al,[esi] ; fetch pixel n+1
add ecx,ebx ; add in dUFrac
adc esi,[4*ebp + UVStepVCarry]; add in steps

现在,大多数编译器将高级CPU特定指令表示为intrinsic,即编译为实际指令的函数。MS Visual c++支持MMX、SSE、SSE2、SSE3和SSE4的intrinsic,因此您不必太过担心使用特定于平台的指令来进行汇编。Visual c++还可以通过适当的/ARCH设置来利用您所针对的实际体系结构。