我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

也许我完全没有理解这个问题的重点,但是您想从一个已排序的整数文件中找到一个丢失的整数吗?

喔…真的吗?让我们想想这样的文件会是什么样子:

1 2 3 4 5 6…第一个丢失的号码……等。

这个问题的解决办法似乎微不足道。

其他回答

统计信息算法解决这个问题的次数比确定性方法少。

如果允许使用非常大的整数,则可以生成一个在O(1)时间内可能唯一的数字。像GUID这样的伪随机128位整数只会与集合中现有的40亿个整数中的一个发生碰撞,这种情况的概率不到640亿亿亿分之一。

If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.

假设“整数”表示32位:10mb的空间足以让您计算输入文件中有多少个数字,具有任何给定的16位前缀,对于所有可能的16位前缀,在一次通过输入文件。至少有一个桶被击中的次数少于216次。执行第二次传递,以查找该bucket中哪些可能的数字已经被使用。

如果它意味着超过32位,但仍然是有限的大小:执行上述操作,忽略所有恰巧落在(有符号或无符号;32位范围。

如果“integer”指的是数学整数:通读输入一次,记录你见过的最长数字中最大的数字长度。当你完成后,输出最大值加1是一个多一位的随机数。(文件中的一个数字可能是一个大于10mb的大字节,但如果输入是一个文件,那么您至少可以表示任何适合它的长度)。

为了完整起见,这里有另一个非常简单的解决方案,它很可能需要很长时间才能运行,但只使用很少的内存。

设所有可能的整数为从int_min到int_max的范围,和 bool isNotInFile(integer)一个函数,如果文件不包含某个整数,则返回true,否则返回false(通过将该特定整数与文件中的每个整数进行比较)

for (integer i = int_min; i <= int_max; ++i)
{
    if (isNotInFile(i)) {
        return i;
    }
}

Surely, and speaking with limited experience (just started learning java at Uni) you can run trhough one set (barrel) of int, and if number not found dispose of barrel. This would both free up space and run a check through each unit of data. If what you are looking for is found add it to a count variable. Would take a long time but, if you made multiple variables for each section and run the check count through each variable and ensure they are exiting/disposing at the same time, the variable storage should not increase? And will speed up the check process. Just a thought.

If they are 32-bit integers (likely from the choice of ~4 billion numbers close to 232), your list of 4 billion numbers will take up at most 93% of the possible integers (4 * 109 / (232) ). So if you create a bit-array of 232 bits with each bit initialized to zero (which will take up 229 bytes ~ 500 MB of RAM; remember a byte = 23 bits = 8 bits), read through your integer list and for each int set the corresponding bit-array element from 0 to 1; and then read through your bit-array and return the first bit that's still 0.

In the case where you have less RAM (~10 MB), this solution needs to be slightly modified. 10 MB ~ 83886080 bits is still enough to do a bit-array for all numbers between 0 and 83886079. So you could read through your list of ints; and only record #s that are between 0 and 83886079 in your bit array. If the numbers are randomly distributed; with overwhelming probability (it differs by 100% by about 10-2592069) you will find a missing int). In fact, if you only choose numbers 1 to 2048 (with only 256 bytes of RAM) you'd still find a missing number an overwhelming percentage (99.99999999999999999999999999999999999999999999999999999999999995%) of the time.

但我们假设不是有40亿个数字;你有232 - 1这样的数字和不到10mb的RAM;所以任何小范围的整数都只有很小的可能性不包含这个数字。

如果保证列表中的每个int都是唯一的,那么可以将这些数字相加,并减去一个#,再减去完整的和(½)(232)(232 - 1)= 9223372034707292160,以找到缺少的int。但是,如果出现了两次int,则此方法将失败。

However, you can always divide and conquer. A naive method, would be to read through the array and count the number of numbers that are in the first half (0 to 231-1) and second half (231, 232). Then pick the range with fewer numbers and repeat dividing that range in half. (Say if there were two less number in (231, 232) then your next search would count the numbers in the range (231, 3*230-1), (3*230, 232). Keep repeating until you find a range with zero numbers and you have your answer. Should take O(lg N) ~ 32 reads through the array.

这种方法效率很低。我们在每一步中只使用两个整数(或者大约8字节的RAM和一个4字节(32位)整数)。更好的方法是将其划分为sqrt(232) = 216 = 65536个箱子,每个箱子中有65536个数字。每个bin需要4个字节来存储它的计数,因此需要218字节= 256 kB。因此,bin 0为(0 ~ 65535=216-1),bin 1为(216=65536 ~ 2*216-1=131071),bin 2为(2*216=131072 ~ 3*216-1=196607)。在python中,你会有这样的代码:

import numpy as np
nums_in_bin = np.zeros(65536, dtype=np.uint32)
for N in four_billion_int_array:
    nums_in_bin[N // 65536] += 1
for bin_num, bin_count in enumerate(nums_in_bin):
    if bin_count < 65536:
        break # we have found an incomplete bin with missing ints (bin_num)

通读~ 40亿整数列表;然后计算216个容器中每个容器中有多少int,并找到一个不包含65536个数字的incomplete_bin。然后你再读一遍40亿的整数列表;但这次只注意整数在这个范围内;当你找到他们的时候,你会有点抓狂。

del nums_in_bin # allow gc to free old 256kB array
from bitarray import bitarray
my_bit_array = bitarray(65536) # 32 kB
my_bit_array.setall(0)
for N in four_billion_int_array:
    if N // 65536 == bin_num:
        my_bit_array[N % 65536] = 1
for i, bit in enumerate(my_bit_array):
    if not bit:
        print bin_num*65536 + i
        break