我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

也许我完全没有理解这个问题的重点,但是您想从一个已排序的整数文件中找到一个丢失的整数吗?

喔…真的吗?让我们想想这样的文件会是什么样子:

1 2 3 4 5 6…第一个丢失的号码……等。

这个问题的解决办法似乎微不足道。

其他回答

您可以使用位标志来标记一个整数是否存在。

遍历整个文件后,扫描每个位以确定数字是否存在。

假设每个整数是32位,如果进行了位标记,它们将方便地放入1gb RAM中。

我想出了下面的算法。

我的想法是:遍历整个整数文件一次,对每个位位置数0和1。0和1的数量必须是2^(numOfBits)/2,因此,如果数量比预期的少,我们可以使用我们的结果数。

例如,假设整数是32位,那么我们需要

int[] ones = new int[32];
int[] zeroes = new int[32];

对于每个数字,我们必须迭代32位,并增加0或1的值:

for(int i = 0; i < 32; i++){
   ones[i] += (val>>i&0x1); 
   zeroes[i] += (val>>i&0x1)==1?0:1;
}

最后,在文件处理后:

int res = 0;
for(int i = 0; i < 32; i++){
   if(ones[i] < (long)1<<31)res|=1<<i;
}
return res;

注意:在某些语言中(如Java) 1<<31是负数,因此,(长)1<<31是正确的方法

通过在某种树结构中存储未访问的整数范围,可以在读取现有整数后加快查找丢失的整数的速度。

首先存储[0..]4294967295],每次读取一个整数,你拼接它所在的范围,当它变成空的时候删除一个范围。最后,你得到了在范围内缺少的精确的整数集。所以如果你把5作为第一个整数,你会得到[0..4]和[6..4294967295]。

这比标记位要慢得多,所以它只适用于10MB的情况,前提是你可以将树的较低级别存储在文件中。

存储这种树的一种方法是使用b -树,其范围的开始作为键,范围的结束作为值。最坏的情况是当你得到的都是奇数或偶数时,这意味着要为树存储2^31个值或几十GB……哎哟。最好的情况是一个排序文件,其中您只需要为整个树使用几个整数。

所以这并不是正确的答案,但我想我应该提到这种方法。我想我面试不及格;-)

这可以在非常小的空间内使用一种变体的二分搜索来解决。

从允许的数字范围0到4294967295开始。 计算中点。 遍历文件,计算有多少数字等于、小于或高于中点值。 如果没有相等的数字,你就完了。中点数就是答案。 否则,选择数字最少的范围,并使用这个新范围重复第2步。

这将需要对文件进行多达32次线性扫描,但它只使用几个字节的内存来存储范围和计数。

这本质上与Henning的解决方案相同,除了它使用两个箱子而不是16k。

由于问题没有指定我们必须找到文件中不存在的最小数字,我们可以生成一个比输入文件本身更长的数字。:)