我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

关于这个问题的详细讨论已经在Jon Bentley的“第一栏”中讨论过。“编程珍珠”Addison-Wesley第3-10页

Bentley讨论了几种方法,包括外部排序,使用几个外部文件的归并排序等,但Bentley建议的最佳方法是使用位字段的单次传递算法,他幽默地称之为“神奇排序”:) 来看看这个问题,40亿个数字可以表示为:

4 billion bits = (4000000000 / 8) bytes = about 0.466 GB

实现bitset的代码很简单:(取自解决方案页面)

#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];

void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }
void clr(int i) {        a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int  test(int i){ return a[i>>SHIFT] &   (1<<(i & MASK)); }

Bentley的算法只对文件进行一次传递,在数组中设置适当的位,然后使用上面的测试宏检查这个数组以找到缺失的数字。

如果可用内存小于0.466 GB, Bentley建议使用k-pass算法,根据可用内存将输入划分为不同的范围。举一个非常简单的例子,如果只有1个字节(即处理8个数字的内存)可用,并且范围从0到31,我们将其分为0到7、8-15、16-22等范围,并在每次32/8 = 4次传递中处理这个范围。

HTH.

其他回答

如果您不假设32位约束,则只返回一个随机生成的64位数字(如果您比较悲观,则返回128位数字)。碰撞的几率是1 / 2^64/(4*10^9)= 4611686018.4(大约40亿分之一)。大多数时候你都是对的!

(开玩笑的…种)。

一些消除

一种方法是消除比特,但这实际上可能不会产生结果(很可能不会)。Psuedocode:

long val = 0xFFFFFFFFFFFFFFFF; // (all bits set)
foreach long fileVal in file
{
    val = val & ~fileVal;
    if (val == 0) error;
}

位计数

跟踪比特数;用最少的比特来产生一个值。同样,这也不能保证生成正确的值。

范围的逻辑

跟踪列表的顺序范围(按开始顺序)。范围由结构定义:

struct Range
{
  long Start, End; // Inclusive.
}
Range startRange = new Range { Start = 0x0, End = 0xFFFFFFFFFFFFFFFF };

遍历文件中的每个值,并尝试将其从当前范围中删除。这个方法没有内存保证,但是它应该做得很好。

出于某种原因,当我读到这个问题时,我想到了对角化。假设是任意大的整数。

Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.

Surely, and speaking with limited experience (just started learning java at Uni) you can run trhough one set (barrel) of int, and if number not found dispose of barrel. This would both free up space and run a check through each unit of data. If what you are looking for is found add it to a count variable. Would take a long time but, if you made multiple variables for each section and run the check count through each variable and ensure they are exiting/disposing at the same time, the variable storage should not increase? And will speed up the check process. Just a thought.

老问题了,但我想知道“非功能性”需求。在我看来,应该给出一个线索——如果这个问题是在其他地方问的,而不是在一本书里,然后继续讨论所有的可能性的利弊。通常情况下,这似乎是在工作面试中问的,让我困惑的是,在不知道软要求的情况下,不可能给出一个明确的答案,即。“查找缺失的数字一定非常快,因为它一秒钟要使用x次。”

我想这样的问题或许可以给出一个合理的答案。

我将所有数字归并排序到一个新文件中,每个int使用4个字节。当然,一开始做起来会很慢。但是它可以用很小的内存量来完成(你不需要把所有内存都保存在RAM中) 使用二进制搜索检查数字是否存在于预排序文件中。因为每个值仍然是4个字节,这没有问题

缺点:

文件大小 第一次排序很慢——但只需要一次

优点:

查找起来非常快

这又是一个非常适合写书的问题。但我认为,当要解决的问题还不完全清楚时,在寻求单一的最佳解决方案时,这是一个奇怪的问题。