NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

这段代码适用于numpy 2D矩阵数组:

mat = np.array([[1, 3], [2, 5]]) # numpy matrix
 
n = 2  # n
n_largest_mat = np.sort(mat, axis=None)[-n:] # n_largest 
tf_n_largest = np.zeros((2,2), dtype=bool) # all false matrix
for x in n_largest_mat: 
  tf_n_largest = (tf_n_largest) | (mat == x) # true-false  

n_largest_elems = mat[tf_n_largest] # true-false indexing 

这将产生一个true-false的n_maximum矩阵索引,也可以从矩阵数组中提取n_maximum元素

其他回答

您可以简单地使用字典来查找numpy数组中的前k个值和下标。 例如,如果你想找到前2个最大值和索引

import numpy as np
nums = np.array([0.2, 0.3, 0.25, 0.15, 0.1])


def TopK(x, k):
    a = dict([(i, j) for i, j in enumerate(x)])
    sorted_a = dict(sorted(a.items(), key = lambda kv:kv[1], reverse=True))
    indices = list(sorted_a.keys())[:k]
    values = list(sorted_a.values())[:k]
    return (indices, values)

print(f"Indices: {TopK(nums, k = 2)[0]}")
print(f"Values: {TopK(nums, k = 2)[1]}")


Indices: [1, 2]
Values: [0.3, 0.25]

如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:

def largest_indices(ary, n):
    """Returns the n largest indices from a numpy array."""
    flat = ary.flatten()
    indices = np.argpartition(flat, -n)[-n:]
    indices = indices[np.argsort(-flat[indices])]
    return np.unravel_index(indices, ary.shape)

例如:

>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0.        ,  0.84147098,  0.90929743],
       [ 0.14112001, -0.7568025 , -0.95892427],
       [-0.2794155 ,  0.6569866 ,  0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825,  0.90929743,  0.84147098])

Use:

def max_indices(arr, k):
    '''
    Returns the indices of the k first largest elements of arr
    (in descending order in values)
    '''
    assert k <= arr.size, 'k should be smaller or equal to the array size'
    arr_ = arr.astype(float)  # make a copy of arr
    max_idxs = []
    for _ in range(k):
        max_element = np.max(arr_)
        if np.isinf(max_element):
            break
        else:
            idx = np.where(arr_ == max_element)
        max_idxs.append(idx)
        arr_[idx] = -np.inf
    return max_idxs

它也适用于2D数组。例如,

In [0]: A = np.array([[ 0.51845014,  0.72528114],
                     [ 0.88421561,  0.18798661],
                     [ 0.89832036,  0.19448609],
                     [ 0.89832036,  0.19448609]])
In [1]: max_indices(A, 8)
Out[1]:
    [(array([2, 3], dtype=int64), array([0, 0], dtype=int64)),
     (array([1], dtype=int64), array([0], dtype=int64)),
     (array([0], dtype=int64), array([1], dtype=int64)),
     (array([0], dtype=int64), array([0], dtype=int64)),
     (array([2, 3], dtype=int64), array([1, 1], dtype=int64)),
     (array([1], dtype=int64), array([1], dtype=int64))]

In [2]: A[max_indices(A, 8)[0]][0]
Out[2]: array([ 0.89832036])

这里有一个更复杂的方法,如果第n个值有联系,则增加n:

>>>> def get_top_n_plus_ties(arr,n):
>>>>     sorted_args = np.argsort(-arr)
>>>>     thresh = arr[sorted_args[n]]
>>>>     n_ = np.sum(arr >= thresh)
>>>>     return sorted_args[:n_]
>>>> get_top_n_plus_ties(np.array([2,9,8,3,0,2,8,3,1,9,5]),3)
array([1, 9, 2, 6])

如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。

import numpy as np
import pandas as pd    

a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()

这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。